ON THE MEASURE OF TRANSCENDENCE OF $\zeta = \sum_{k=0}^{\infty} G_k^{-e_k}$ FORMAL LAURENT SERIES

AHMET Ş. ÖZDEMİR

ABSTRACT. In this work, we determine the transcendence measure of the formal Laurent series, $\varsigma = \sum_{k=0}^{\infty} G_k^{-e_k}$ whose transcendence has been established by S. M. SPENCER [15]. Using the methods and lemmas in P. Bundschuh’s article measure of transcendence for the above n is determined as

$$T(n, H) = H^{-(d+1)q^d - edq^{2d}}.$$

On the other hand, it was proven that transcendence series η is not a U but is a S or T numbers according to the Mahler’s classification.

1. INTRODUCTION

Let p a prime number and $u \geq 1$ an integer. Let F be a finite field with $q = p^u$elements. We denote the ring of the polynomials with in one variable over F by $F[x]$ and its quotient field by $F(x)$. If $a \in F[x]$ is a non-zero polynomial, denote by ∂a its degree. If $a = 0$, then its degree is defined as $\partial 0 := -\infty$. Let a and b ($b \neq 0$) two polynomials from $F[x]$ and define a discrete valuation of $F(x)$ as follows

$$\left| \frac{a}{b} \right| = q^{\partial a - \partial b}.$$
Let K be the completion of $F(x)$ with respect to this valuation. Every element ω of K can be uniquely represented by

$$\omega = \sum_{n=-k}^{\infty} c_n x^{-n}, \ c_n \in F.$$

If $\omega = 0$, then all c_n are zero. If $\omega \neq 0$, then there exist and $k \in \mathbb{Z}$ for which $c_k \neq 0$. If $\omega \neq 0$, then we have $|\omega| = q^{-k}$.

Therefore K is the field all Formal Laurent series. The classical theory of transcendence over complex numbers has a similar version over K. Elements of $F[x]$ and $F(x)$ correspond to integers and fractions of the classical theory, respectively.

If ω is one of the roots of a non-zero polynomial with coefficients in $F[x]$, then $\omega \in K$ is said to be algebraic over $F(x)$. Otherwise, ω is called transcendental over $F(x)$.

The studies to find transcendental numbers in K were initiated first by Wade [16-19]. Also Geijsel [4-7] did similar studies. As it is the case in the classical theory of transcendental numbers, it is possible to define a measure of transcendence.

The measure of transcendence is thoroughly studied in the classical theory. For example, the transcendence measure of e has been widely investigated by Mahler [9], Fel’dman [3] and Cijsw [2]. Example for transcendence measure in the field K have been given for the first time by Bundschuh [1]. Further more, Özdemir showed the measure of transcendence of some Formal Laurent series [11],[12].

In this work, we determine the transcendence measure of some Formal Laurent series whose transcendence has been established by S.M.Spencer [15]. We take the $G_0 | G_1 | G_2, \ldots, d \in g G_0 \geq 1, e = e_0 < e_1 < e_2 < \ldots, < e_k | e_{k+1}^{e_1} / e_2 \neq p^r \text{ for } r > s, e_k \in \mathbb{Z}.$

If $G \in F[x]$ is a fixed non-zero polynomial of degree, $\partial(G_k) = g_k, g \geq 1$ then the series

$$\varsigma = \sum_{k=0}^{\infty} G_k^{-e_k}$$ \hspace{1cm} (1)

is an element of K,and S.M.Spencer showed its transcendence in [14].

Using the methods and lemmas in Bundschuh’s article [1], we determine a transcendence measure of ς. We take and arbitrary non-zero polynomial

$$P(y) = \sum_{v=0}^{n} a_v y^v, \ (a_v \in F[x]; v = 0, 1, \ldots, n)$$ \hspace{1cm} (2)

Whose degree $\partial(P)$ is less than or equal to n. The height of P is denoted by

$$h(p) = \max_{v=0}^{\infty} |a_v| = q^{\max_{v=0}^{\infty} \partial(a_v)}$$

For the transcendental element $\varsigma = \sum_{k=0}^{\infty} G_k^{-e_k}$ of K, we define the positive quantity

$$\Lambda_n(H, \varsigma) = \min |P(\varsigma)|,$$
where \(P \neq 0, \partial(P) \leq n, h(P) \leq H \). If \(T(n, H) \) is a function of the variables \(n, H \) of \(\Lambda_n(H, \varsigma) \) which satisfies the inequality

\[
\Lambda_n(H, \varsigma) \geq T(n, H)
\]

for all sufficiently large values of \(n \) and \(H \), then \(T(n, H) \) is said to be a transcendence measure of \(\varsigma \).

2. Preliminaries

Theorem 2.1. We take an arbitrary, non-zero polynomial

\[
P(y) = \sum_{v=0}^{n} a_v y^v, (a_v \in F[x]; v = 0, 1, \ldots, n)
\]

Further let \(\partial(P) = d, h(p) = h \) and \(a = \max_{v=0}^{d} \partial a_v \).

\[
d p^m \log h \geq g_k e_k \log q.
\]

Then we have

\[
|P(\xi)| \geq h^{-(d+1)q^d - \epsilon d q^{2d}}
\]

and the transcendence measure of \(\omega \) is

\[
T(n, H) = H^{-(d+1)q^d - \epsilon d q^{2d}}
\]

As in the classical theory of transcendental number theory (see Schneider [13], Pag. 6), it is possible to define Mahler’s classification on \(K \). Let \(K \) be transcendental, and define :

\[
\Theta_n(H, \eta) := \lim_{H \to \infty} \sup_{n} \frac{-\log \Theta_n(H, \eta)}{\log H}
\]

\[
\Theta(\eta) := \lim_{n \to \infty} \sup \frac{1}{n} \Theta_n(\eta)
\]

Hence \(\Theta_n(\eta) \geq n \) for every \(n \in N \) and so \(\Theta(\eta) \geq 1 \). For every \(n, H \in N \),

\[
\Theta_n(H, \eta) < H^{-n} q^n \max(1, |\eta|^n)
\]

is satisfied (see Bundschuh [1], Lemma 3).

On the other hand, let the least natural number \(n \) satisfying \(\Theta_n(\eta) \geq \infty \) be donated by \(\mu(\eta) \). If there is no such \(n \), then on may define \(\mu(\eta) \) as \(\infty \). In this case, the transcendental number \(\eta \in R \) is called

- S-Laurent series if \(1 \leq \Theta(\eta) < \infty \) and \(\mu(\eta) = \infty \),
- T-Laurent series if \(\Theta(\eta) = \infty \) and \(\mu(\eta) = \infty \),
- U-Laurent series if \(\Theta(\eta) = \infty \) and \(\mu(\eta) < \infty \).
Moreover the U-class may be divided into subclasses. If $\mu(\eta) = m$ ($m > 0$), then η is called a U_m-Laurent series. Le Vaque [8] was the first to show that for all m, U_m is non-empty in the classical theory but the honour goes to Oryan [10] if the ground field is K.

According to the above classification, the series defined in (1) can not be a U-Laurent series. This fact may be proved by the help of the Theorem 2.1.

Theorem 2.2. The η Laurent series defined by (1) doesn’t belong to the class U so that it belongs to the class S or to the class T.

We will use the following lemmas in proof of the theorem.

Lemma 2.1. Let

$$P(y) = \sum_{v=0}^{n} a_v y^v$$

$a_v \in F[x], \ a_d \neq 0 \ (d \geq 1), \ a = \max \partial a_v$ \ (10)

Then there are some elements $A_0, A_1, \ldots, A_d \in F[x]$, not all zero satisfying.

$$\partial A_1 \leq a_d (q^d - d + 1) \ \text{for} \ 0 \leq j \leq d \ \text{and}$$

$$\sum_{j=0}^{d} A_j y^{q^j} = p(y) \sum_{j=0, q^j \geq d}^{d} A_j \sum_{k=0}^{q^j - d} b_k a_d^{-k-1} y^{q^j - d - k} =: P(y)Q(y)$$ \ (11)

where $b_0 := 1$ and b_k, for $k \geq 1$ is the sum of product of exactly k terms from a_0, a_1, \ldots, a_d, multiplied by (\pm).

Proof. See the [1], lemma 4, page 416.

Lemma 2.2. Let $\eta \in K$ and $|\eta| = q^\lambda$. Under the hypotheses of Lemma 1 we have

$$|Q(\eta)| \leq q^{a_d(q^d - d + 1) + (q^d - d) \max(a, \lambda)}.$$ \ (12)

Proof. See the [1], lemma 5, page 417.

3. Proof of the Theorems

Proof. (Theorem 1)

Consider the polynomial defined by (4). With $\partial(p) = d, a_d \neq 0$. The Theorem is true obliviously for $d = 0$. Because then $|P(\eta)| = |a_0|$. $a_0 \in F[x]$ and since $a_0 \neq 0$ and we have, $|a_0| = q^{\beta(a_0)} > 1$. So the left side of (6) is less then 1. Let $d \geq 1$. By Lemma 1 there are some elements the $A_0, A_1, \ldots, A_d \in F[x]$ not all zero, such that

$$\sum_{j=0}^{d} A_j y^{q^j} = p(y) \sum_{j=0, q^j \geq d}^{d} A_j \sum_{k=0}^{q^j - d} b_k a_d^{-k-1} y^{q^j - d - k} =: P(y)Q(y)$$ \ (13)

$$\partial A_j \leq a_d (q^d - d + 1) \leq a_d q^d (0 \leq j \leq d)$$ \ (14)
In (13) we put η instead of y and using the fact that F is a field having q elements. We get

$$P(\eta)Q(\eta) = \sum_{j=0}^{d} A_j \eta^q$$

Separate the above sum as $S_1 + S_2$, where

$$S_1 = G^{e_\beta q^d} \sum_{j=0}^{d} A_j \sum_{k=0}^{k_j} G^{-e_k q^d} \quad \text{and} \quad S_2 = G^{e_\beta q^d} \sum_{j=0}^{d} A_j \sum_{k=k_j+1}^{\infty} G^{-e_k q^d}$$

(16)

where β is non-negative integer to be chosen later. Let the rational integers $k_j (j = 0, 1, ..., d)$ be defined by

$$q^{j-d} e_{kj} < e_\beta \leq q^{j-d} e_{kj+1}$$

(17)

1) First, we prove that $|S_1| \geq 1$. That is, we prove S_1 is a polynomial but not equal zero. Their terms of the S_1 are

$$G^{e_\beta q^d} A_j G^{-e_k q^d} = A_j G^{e_\beta q^d - e_k q^d}$$

We show that $e_\beta q^d - e_k q^d \geq 0$ by (17), and since k ranges from 0 to k_j in the sum S_1. We have

$$e_\beta q^d - e_k q^d \geq q^j (e_{kj} - e_{kj}) \geq 0$$

(20)

which implies (19). By (19) and (18), S_1 is polynomial. Now we show S_1 isn’t identically zero as equivalently. We have equality in (19) when and only when $k = \beta$ and $j = d$. If we write the terms of S_1, we find

$$S_1 = A_0 \left(\sum_{k=0}^{k_0} G^{e_\beta q^d - e_k q^d} \right) + ... + A_d \left(\sum_{k=0}^{k_d} G^{e_\beta q^d - e_k q^d} \right)$$

(18)

$$S_1 = A_0 \left(G^{e_\beta q^d - e_0 q^d} + ... + G^{e_\beta q^d - e_{k_0} q^d} \right) + ... + A_d \left(G^{e_\beta q^d - e_0 q^d} + ... + G^{e_\beta q^d - e_{k_d} q^d} \right)$$

(21)

$$\mu := \min_{j=0}^{d-1} (e_\beta q^d - e_{kj} q^d, e_\beta q^d - e_{\beta-1} q^d)$$

(22)

G^μ divides of all terms in the sum(21) except only one term. Therefore,

$$S_1 = G^\mu R + A_d \quad (R \in F[x])$$

(23)

and hence we find

$$S_1 \equiv A_d \pmod{G^\mu}$$

(24)

Since $h = h(P) = q^a$,

$$a = \frac{\log h}{\log q}$$

(25)

By (5) and (25) we find

$$ad q^d \geq \frac{q}{e}$$

(26)

From (19) and (26) it holds (27). For this. Consider the sequence

$$\{e_{-1}, e = e_0, e_1, e_2, ...\}.$$

There are β non-negative integers such that

$$e_{\beta-1} \leq \frac{ad q^d}{g} < e_\beta$$

(27)
From (27) we obtain the following statement for the above β

\[
\frac{adq^d}{g} < e_\beta \leq \frac{eadq}{g}
\]

(28)

By (17) we have $e_\beta q^{d-j} \geq e_{k_j} \implies q^{d-j} \geq \frac{e_{k_j}}{e_\beta} \implies q^{d-j} - \frac{e_{k_j}}{e_\beta} \geq 0$. Hence we obtain

\[
q^{d-j} - \frac{e_{k_j}}{e_\beta} \geq 1\quad (j < d)
\]

(29)

further, since $e_{\beta-1} < e_\beta \implies \frac{e_{\beta-1}}{e_\beta} < 1 \implies 0 < 1 - \frac{e_{\beta-1}}{e_\beta}$. Thus we get

\[
1 - \frac{e_{\beta-1}}{e_\beta} \geq 1
\]

(30)

From (22),

\[
\mu = e_\beta \min_{j=0}^{d-1} q^j \left(q^{d-j} - \frac{e_{k_j}}{e_\beta} \right) q^d \left(1 - \frac{e_{\beta-1}}{e_\beta} \right)
\]

(31)

by (29), (30) and (31) and $q^{d_j}q^j > 1$ we get

\[
\mu > e_\beta
\]

(32)

by (14), (28) and (32) we obtain

\[
g\mu > ge_\beta > adq^d > adq^d - d + 1 \geq \partial (A_d)
\]

that is,

\[
g\mu > \partial (A_d).
\]

this inequality means

\[
\partial (G^\mu) = g\mu > \partial (A_d).
\]

Hence we see G^μ doesn’t divide A_d. That is

\[
A_d \not\equiv 0 \pmod{G^\mu},
\]

by (28) and (36)

\[
S_1 \equiv A_d \not\equiv 0 \pmod{G^\mu}
\]

(33)

therefore S_1 is not identically 0. so S_1 is a non-zero polynomial. so it is shown that $|S_1| \geq 1$.

2) we will show $|S_2| < 1$ since $k \geq k_j + 1$ in S_2, for the degree of the terms of S_2, we may write the following inequality from (14):

\[
\partial \left(G^{e_\beta q^d} A_j G^{-e_k q^d} \right) = \partial A_j + \partial G^{e_\beta q^d - e_k q^d}
\]

\[
\leq adq^d + g \left(e_\beta q^d - e_k q^d \right)
\]

\[
\leq adq^d + g \left(e_\beta q^d - e_{k_j+1} q^d \right)
\]

\[
\leq adq^d - ge_\beta \left(\frac{e_{k_j+1}}{e_\beta} q^d - q^d \right)
\]

(34)

by (17) $q^d e_\beta < q^d e_{k_j+1} \quad 0 < \frac{e_{k_j+1}}{e_\beta} q^d - q^d$ is an integer. further, by (27) we obtain

\[
adq^d < ge_\beta
\]

(35)
from (34), (35) and since \(\frac{e_{k+1}}{e_k}q^j - q^d\) is positive integer, we get

\[
\partial \left(G^e \partial_j G^{-e_k} q^j \right) < 0
\]

that is, the terms of \(S_2\) have negative degrees. this means

\[
|S_2| < 1
\]

3) we will prove the claim of the theorem. by the definition of \(S_1\) and \(S_2\), we can write \(S_1 + S_2 = G^e \partial_j P(\eta) Q(\eta)\). hence we obtain

\[
|S_1 + S_2| = \left| G^e \partial_j \right| |P(\eta)||Q(\eta)|
\]

(36)

since \(|S_1| \geq 1\) and \(|S_2| < 1\), we get

\[
|S_1 + S_2| = \max(|S_1|,|S_2|) = |S_1|
\]

(37)

By (36) and (37), we obtain

\[
|P(\eta)||Q(\eta)| = |S_1| \left| G^e \partial_j \right|^{-1}
\]

(38)

let \(|\eta| = q^\lambda\). By (1) and since \(|G^e\partial_k| = q^{d\deg G^e_k} = q^{ge_k}\),

we get \(|\eta| = q^{-ge_0} = q^{-ge}\) therefore \(\lambda = -ge\). since \(\max(a, \lambda) = \max(a, -ge) = a\) and by lemma 2, we find

\[
|Q(\eta)| \leq q^{ad(q^d-d+1)+(q^d-d)\max(a, \lambda)} \leq q^{adq^d+aq^d} \leq q^{a(d+1)q^d}
\]

(39)

further, by (28)

\[
\left| G^e \partial_j \right| = q^{ge \partial_j q^d}
\]

\[
\leq q^{cadq^d q^d}
\]

\[
= q^{cadq^{2d}}
\]

(40)

by (38),(39),(40) and since \(|S_1| \geq 1\)

\[
|P(\eta)| = |S_1| \left| G^e \partial_j \right|^{-1} |Q(\eta)|^{-1}
\]

\[
\geq \left| G^e \partial_j \right|^{-1} |Q(\eta)|^{-1}
\]

\[
\geq q^{cadq^{2d} - a(d+1)q^d}
\]

(41)

by (41) and since \(h = q^a\)

\[
|P(\eta)| \geq h^{-(d+1)q^d - cadq^{2d}}
\]

this is the claim of the theorem 1.

Proof. (Theorem 2)

let the degree of the polynomial \(P\) in Theorem 1 be \(\partial(P) = d \leq n\) and let its height be

\[
h(P) = h \leq H \text{ by (6)},
\]

\[
|P(\eta)| \geq H^{-(n+1)q^n - \epsilon q^{2n}}.
\]

(42)
(42) and (5) and by the definition of Mahler’s classification

$$\Theta_n(H, \eta) \geq H^{-(n+1)q^n - cnq^{2n}}$$

for all sufficiently large natural numbers n and H. hence consequently

$$\log \Theta_n(H, \eta) \geq \left[-(n + 1)q^n - cnq^{2n} \right] \log H$$

$$\frac{\log \Theta_n(H, \eta)}{\log H} \leq (n + 1)q^n - cnq^{2n}$$

(43)

$$\Theta_n(\eta) \geq \lim_{H \to \infty} \sup \frac{-\Theta_n(H, \eta)}{\log H} \leq enq^{2n} + (n + 1)q^n$$

(44)

that is, for every index n

$$\Theta_n(\eta) < \infty$$

by the definition of Mahler’s classification, $$\mu(\eta) = \infty$$. This shows $$\eta$$ can never to the class U so that it belongs to the class S or to class T.

References

Marmara University, A. Educational Faculty, Department of Math. Goztepe-Kadikoy, Istanbul/Turkey

Email address: ahmet.ozdemir@marmara.edu.tr