ON SEMI-IN Variant ξ⊥-SUBMANIFOLDS OF LORENTZIAN PARA-SASAKIAN MANIFOLDS

MOBIN AHMAD

Abstract. In the present paper, we study semi-invariant ξ⊥-submanifolds of Lorentzian para-Sasakian manifolds. We discuss the integrability conditions of the distributions D and $D⊥$ on semi-invariant ξ⊥-submanifolds of Lorentzian para-Sasakian manifolds. We also obtain some characterizations for the totally umbilical semi-invariant ξ⊥-submanifolds of Lorentzian para-Sasakian manifolds.

1. Introduction

Received:2018-05-15 Revised:2018-08-29 Accepted:2019-02-19

2010 Mathematics Subject Classification: 53C50, 53C2, 53C40, 52B25.

Key words: Semi-invariant submanifolds, Lorentzian para-Sasakian manifold, Totally umbilical semi-invariant submanifolds, Totally geodesic leaves, Distributions.

* Corresponding author
of LP-Saskian manifold were studied by several geometers (see, [10], [11], [12], [13], [14]). N. Papaghiuc [15] defined ξ^\perp-submanifolds in which the structural vector field ξ is orthogonal to the submanifolds and studied geometry of the leaves on Kenmotsu manifold. Constantin C. et. al [16] studied semi-invariant ξ^\perp-submanifolds of generalized quasi-Sasakian manifolds. M. M. Tripathi [17] studied semi-invariant ξ^\perp-submanifolds of trans-Sasakian manifold. Further, S.Y. Perktas et. al [18] studied semi-invariant ξ^\perp-submanifolds of P-Sasakian manifold. In this paper, we study semi-invariant ξ^\perp-submanifolds of LP-Sasakian manifold. In particular, we recover the results of Papaghiuc [15] and Calin [16].

The paper is organized as follows. In section 2, we give a brief description of Lorentzian para-Sasakian manifold. In section 3, we find some results on semi-invariant ξ^\perp-submanifolds of Lorentzian para-Sasakian manifolds, discuss the integrability of distributions D and D^\perp of semi-invariant ξ^\perp-submanifolds of Lorentzian para-Sasakian manifolds and finally in section 4, we find some characterizations for the totally umbilical semi-invariant ξ^\perp-submanifolds of Lorentzian para-Sasakian manifolds.

2. Preliminaries

Lorentzian para-Sasakian manifold

Let \tilde{M} be $(2n + 1)$-dimensional almost contact metric manifold with a metric tensor g, a tensor field ϕ of type $(1, 1)$, a vector field ξ and a 1–form η which satisfy

$$\phi^2 X = X + \eta(X)\xi, \eta(\xi) = -1, \quad (2.1)$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \quad (2.2)$$

$$g(X, \xi) = \eta(X), \quad (2.3)$$

$$g(\phi X, Y) = g(X, \phi Y) \quad (2.4)$$

for all vector fields X, Y tangent to \tilde{M}. Such a manifold is termed as Lorentzian para-contact manifold and the structure (ϕ, η, ξ, g) a Lorentzian para-contact structure [1]. Also in a Lorentzian para-contact structure the following relations hold:

$$\phi \xi = 0, \ \eta(\phi X) = 0, \ \text{rank}(\phi) = n - 1.$$

A Lorentzian para-contact manifold \tilde{M} is called Lorentzian para-Sasakian (LP-Sasakian manifold if [2]).

$$\left(\tilde{\nabla}_X \phi\right)(Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi, \quad (2.5)$$
for all vector fields X, Y tangent to \bar{M}, where $\bar{\nabla}$ is the Riemannian connection with respect to g.

3. Semi-invariant ξ^\perp-submanifolds

Let M be an m-dimensional submanifold of \bar{M}, isometrically immersed in \bar{M}. The tangent bundle $T\bar{M}$ of \bar{M} is decomposed as

$$T\bar{M} = TM \oplus T\bar{M}^\perp.$$

Definition 3.1 [8] An m-dimensional Riemannian submanifold M of a Lorentzian para-Sasakian manifold \bar{M} is called a semi-invariant ξ^\perp-submanifold of Lorentzian para-Sasakian manifold if ξ is normal to M and there exists on M a pair of distributions (D, D^\perp) such that

(i) TM orthogonally decomposes as $D \oplus D^\perp$,

(ii) the distribution D_x is invariant under ϕ, that is $\phi D_x \subseteq D_x$ for each $x \in M$,

(iii) the distribution D^\perp is anti-invariant under ϕ, that is $\phi D^\perp_x(M) \subseteq T^\perp_x(M)$ where $T_x M$ and $T^\perp_x M$ are tangent and normal spaces of M at $x \in M$. If $D^\perp = 0$ then M is an invariant ξ^\perp-submanifold. The normal bundle $T^\perp M$ can also be decomposed as

$$T^\perp M = \phi D^\perp \oplus \mu \oplus \{\xi\},$$

where $\phi \mu \subseteq \mu$.

Any vector X tangent to M is given by

$$X = PX + QX,$$

where PX and QX belong to the distribution D and D^\perp respectively. Moreover, for any $X \in \Gamma(TM)$ and $N \in \Gamma(TM^\perp)$, we put

$$\phi X = tX + \omega X,$$

where tX (resp. ωX) denotes the tangential (resp. normal) components of ϕX and

$$\phi N = BN + CN,$$

where BN (resp. CN) denotes the tangential (resp. normal) component of ϕN.

Gauss formula for semi-invariant ξ^\perp-submanifolds of an $LP-$ Sasakian manifold is given by

$$\nabla_X Y = \nabla_X Y + h(X,Y). \quad (3.4)$$

Weingarten formula is given by

$$\bar{\nabla}_X N = -A_N X + \nabla^\perp_X N \quad (3.5)$$

for any $X,Y \in TM$, $N \in T^\perp M$, where h (resp. A_N) is the second fundamental form (resp. tensor) of M in \bar{M} and ∇^\perp denotes the operator of the normal connection. Moreover, we have

$$g(h(X,Y),N) = g(A_N X,Y). \quad (3.6)$$

Now, we study the integrability of both the distributions D and D^\perp. For this purpose, first we establish some results for further use.

Proposition 3.1. Let M be a semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \bar{M}. Then

(a) $(\nabla_X t)Y = A_\omega Y X + Bh(X,Y), \quad (3.7)$

(b) $(\nabla_X \omega)Y = Ch(X,Y) - h(X,tY) + g(X,Y)\xi$

$\forall X,Y \in \Gamma(TM)$.

Proof In view of (3.2), (3.3), (3.4) and (3.5), we have

$$ (\bar{\nabla}_X \phi)Y = (\nabla_X t)Y - A_\omega Y X + (\nabla_X \omega)Y + h(X,tY) - \phi h(X,Y). \quad (3.8)$$

Using (2.6) in (3.8), we get

$$ g(X,Y)\xi + \phi h(X,Y) = (\nabla_X t)Y - A_\omega Y X + (\nabla_X \omega)Y + h(X,tY). \quad (3.9)$$

Comparing tangential and normal components of (3.9), we have our assertion.

We can state the following proposition.

Proposition 3.2 (16). Let M be a semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \bar{M}. Then

(a) $BN \in D^\perp$,

(b) $CN \in \mu$

for any $N \in \Gamma(TM^\perp)$.

Proposition 3.3. Let M be a semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \bar{M}. Then

$$A_{\omega Z}W = A_{\omega W}Z.$$

Proof Let $Y, Z \in D^\perp$. Using (2.5), (3.2), (3.4) and (3.6), we have

$$g(A_{\phi W}Z, X) = g(h(X, Z), \phi W)$$

$$= g(\nabla_X Z, \phi W)$$

$$= g(\phi \nabla_X Z, W)$$

$$= g(\nabla_X \phi Z, W)$$

$$= -g(\phi Z, \nabla_X W)$$

$$= -g(h(X, W), \phi Z)$$

$$= -g(A_{\phi Z}W, X),$$

which is equivalent to

$$A_{\phi W}Z = A_{\phi Z}W.$$

But from (3.2), we have $\phi Z = \omega Z$ and $\phi W = \omega W$, then above equation reduces to $A_{\omega W}Z = A_{\omega Z}W$.

Theorem 3.1. Let M be a semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \bar{M}. Then the distribution D is integrable if and only if

$$h(X, \phi Y) = h(Y, \phi X)$$ \hspace{1cm} (3.10)

$\forall X, Y \in \Gamma(D)$.

Proof Let $X, Y \in \Gamma(D)$. Then from (3.7)(b), we get

$$\omega[X, Y] = h(X, tY) - h(Y, tX).$$ \hspace{1cm} (3.11)

Our assertion is a consequence of (3.11).
Theorem 3.2. Let M be a semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \tilde{M}. Then the distribution D^\perp is integrable.

Proof In view of (3.7)(a) and Proposition 3.3, letting $Z, W \in \Gamma(D^\perp)$, we have

Consequently, $[Z, W] \in \Gamma(D^\perp)$ for all $Z, W \in \Gamma(D^\perp)$. Hence D^\perp is integrable.

Suppose that $(e_i, \phi e_i, e_{2p+j}), i \in 1, 2, ..., p, j \in 1, 2, ..., q$ be an adapted orthonormal local frame on M, where $q = \dim D^\perp$. Now, we can state the following:

Theorem 3.3. Let M be a semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \tilde{M}. Then

$$\eta(H) = 1/m \text{ trace}(A_\xi), \ m = 2p + q.$$

Proof From the general mean curvature formula $H = 1/m \sum_{a=1}^s \text{ trace}(A_{\xi_a})\xi_a$, where $\{\xi_1, \xi_2, ..., \xi_s\}$ is an orthonormal basis in TM^\perp, the conclusion holds by straightforward computations.

Theorem 3.4. Let M be a semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \tilde{M}. Then

(1) if the distribution D is integrable, then its leaves are totally geodesic in M if and only if $h(X, Y) \in \Gamma(\mu), \ X, Y \in \Gamma(D)$,

(2) any leaf of the distribution D^\perp is totally geodesic in M if and only if $h(X, Z) \in \Gamma(\mu), \ X \in \Gamma(D)$ and $Z \in \Gamma(D^\perp)$.

Proof Let us prove the first statement. Let M^* be a leaf of the integrable distribution D and h^* the second fundamental form of M^* in M. Also, let $X, Y \in M^*, \ X, Y \in D$.

Differentiating covariantly $\phi Y = tY$ and using (3.4), we get

$$\nabla_X tY + h^*(X, tY) = (\nabla_X \phi)Y + \phi(\tilde{\nabla}_X Y).$$

Using (2.5) in above equation, we have

$$(\nabla_X tY) + h^*(X, tY) = g(X, Y) \xi + \eta(Y)X + 2\eta(X) \eta(Y)\xi + \phi(\tilde{\nabla}_X Y).$$
Taking inner product with Z and noting that $Z \in D^\perp$, $\phi Z \in \phi D^\perp \subset TM^\perp$, $g(\phi X, Y) = g(X, \phi Y)$, we get

$$g(h^*(X, tY), Z) = g(\phi \nabla_X Y, Z)$$
$$g(h^*(X, tY), Z) = g(\nabla_X Y, \phi Z)$$
$$g(h^*(X, tY), Z) = g(\nabla_X Y + h(X, Y), \phi Z)$$
$$g(h^*(X, tY), Z) = g(\nabla_X Y, \phi Z) + g((h(X, Y), \phi Z)$$
$$g(h^*(X, tY), Z) = g(h(X, Y), \phi Z),$$

which gives

$$h^*(X, tY) = 0,$$

if and only if $h(X, Y) \in \mu$.

The proof of second part of the theorem is analogous to that of Kenmotsu case in ([15], P. 117).

4. Totally umbilical semi-invariant ξ^\perp-submanifolds

In this section, we obtain a complete characterization of a totally umbilical semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \bar{M}. For a totally umbilical submanifold we have

$$h(X, Y) = g(X, Y)H, \ X, Y \in \Gamma(TM). \tag{4.1}$$

Theorem 4.1. A semi-invariant ξ^\perp-submanifold M of an LP-Sasakian manifold \bar{M} with $\dim D^\perp \geq 2$ is totally umbilical if and only if

$$h(X, Y) = 1/m \ g(X, Y) \ \text{trace} \ (A_\xi)\xi. \tag{4.2}$$

Proof Suppose that M is a totally umbilical semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \bar{M}. Let $X \in \Gamma(D)$ be the unit vector field and $N \in \Gamma(\mu)$. Using Gauss formula (3.4), we get

$$h(X, X) = -\nabla_X X + \phi(\bar{\nabla}_X \phi X - (\bar{\nabla}_X \phi)X) - \eta(\nabla_X X)\xi.$$

$$= -\nabla_X X + \phi(\bar{\nabla}_X \phi X - (\bar{\nabla}_X \phi)X) - g(\nabla_X X + h(X, X), \xi)\xi.$$

$$= -\nabla_X X + \phi(\bar{\nabla}_X \phi X - (\bar{\nabla}_X \phi)X)$$

Taking inner product with N, we have

$$g(H, N) = g(h(X, X), N) = 0,$$
which shows that $H \in \phi D^\perp \oplus \text{span} \{\xi\}$.

Now, letting $W,Z \in D^\perp$, From (2.5) and (3.5), we get

$$g(W,Z)\xi + \phi(\nabla_W Z + \phi h(W,Z)) = -A_\phi ZW + \nabla^\perp_W \phi Z.$$

Equating vertical components of above equations and then the inner product with ϕH gives

$$g(W,Z)g(\phi H,\phi H) = g(Z,\phi H)g(W,\phi H). \quad (4.3)$$

Since $D^\perp \geq 2$, for $Z = W \perp \phi H$, the above relation gives $\phi H = 0$ which implies that $H \in \text{span}\{\xi\}$. If we consider an orthonormal frame $\{e_i,e_{p+i}\}, i = 1,2,3,\ldots,p$ on M. Since M is a semi-invariant ξ^\perp-submanifold, we can write

$$H = g(H,\xi)\xi = 1/m \sum g(h(e_i,e_i),\xi)\xi = 1/m \text{trace}(A_\xi)\xi.$$

Using (4.1) in above equation, we get (4.2).

Conversely, if (4.2) holds, then we get (4.3). From (4.2) and (4.3) together we conclude that M is totally umbilical.

Corollary 4.1. Every semi-invariant ξ^\perp-hypersurface M of an LP-Sasakian manifold is geodesic.

Proof Let M is a hypersurface, that is $TM^\perp = \text{span}\{\xi\}$, which implies that $h(X,Y) \in \text{span} \xi$. Then Corollary 4.2 follows from (4.3).

We call a semi-invariant product as a semi-invariant ξ^\perp-submanifold of \bar{M} which can be locally written as a Riemannian product of a ϕ-invariant submanifold and a ϕ anti–invariant submanifold of \bar{M}, both of them orthogonal to ξ.

Theorem 4.2. Let M be a totally umbilical semi-invariant ξ^\perp-submanifold of an LP-Sasakian manifold \bar{M} with $\dim D^\perp \geq 2$. Then M is a semi-invariant product.

Proof Let M be a totally umbilical submanifold, then $h(X,Z) = 0$ for any $X \in \Gamma(D)$ and $Z \in \Gamma(D^\perp)$. So by Theorem 3.4, the leaves of D^\perp are totally geodesic submanifold of M. By
Corollary 4.1, \(h(X,Y) \in \text{span} \{\xi\} \subseteq \mu \) for any \(X,Y \in \Gamma(D) \). Combining this fact with Theorem 3.4, this implies that the invariant distribution \(D \) is integrable and its integral manifolds are totally geodesic submanifolds of \(M \). Hence we conclude that \(M \) is semi-invariant product.

Theorem 4.3. Let \(M \) be a totally umbilical semi-invariant \(\xi^\perp \)-submanifold of an LP-Sasakian manifold \(\bar{M} \). If \(D \) is integrable, then each leaf of \(D \) is a totally geodesic submanifold of \(M \).

Proof Using (3.7)(b) for any \(X \in \Gamma(D) \), we get

\[
\omega(\nabla_X X) = -g(X,X)CH + g(X,\phi X)H - g(X,X)\xi.
\]

Since \(CH \in \Gamma(\mu) \) by Proposition 3.2, \(H \in \text{span} \{\xi\} \) from Theorem 4.1, \(\xi \in \Gamma(\mu) \) and \(\omega(\nabla_X X) \in \phi D^\perp \). From the above equation we deduce that \(\omega(\nabla_X X) = 0 \), or equivalently

\[
\nabla_X X \in \Gamma(D) \quad \forall \quad X \in \Gamma(D).
\]

(4.4)

As \(D \) is integrable, Frobenius theorem ensures that \(M \) is foliated by leaves of \(D \). Combining this fact with (4.4), we conclude that the leaves of \(D \) are totally geodesic submanifolds of \(M \).

Acknowledgement. Integral University Manuscript Communication Number: IU/R & D/2017-MCN-00022. The author is grateful to the referees for their comments to improve the paper.

References

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, INTEGRAL UNIVERSITY, KURSI ROAD, LUCKNOW-226026, INDIA.

Email address: mobinahmad68@gmail.com