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Abstract. We study biwarped product submanifolds with a slant base factor in locally

product Riemannian manifolds. We prove an existence theorem for such submanifolds.

Then we give a necessary and sufficient condition for such a manifold to be a warped prod-

uct. We establish a general inequality for such submanifolds. The equality case is also

considered. Moreover, we give an application of this inequality.
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1. Introduction

Let (Mi, gi) be Riemannian manifolds for i ∈ {0, 1, 2} and let f1,2 : M0 → (0,∞) be

smooth functions. Then the biwarped product or twice warped product manifold [5, 14]

M0 ×f1 M1 ×f2 M2 is the product manifold M̄ = M0 ×M1 ×M2 endowed with the metric

g = π∗
0(g0)⊕ (f1 ◦ π0)2π∗

1(g1)⊕ (f2 ◦ π0)2π∗
2(g2).
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More precisely, for any vector fields X̄ and Ȳ of M̄ , we have

g(X̄, Ȳ ) = g0(π0∗X̄, π0∗ Ȳ ) +
2∑

i=1

(fi ◦ π0)2gi(πi∗X̄, πi∗ Ȳ ),

where πi : M̄ → Mi is the canonical projection of M̄ onto Mi, π
∗
i (gi) is the pullback of gi

by πi and the subscript πi∗ denotes the derivative map of πi for each i. The functions f1

and f2 are called warping functions and each manifold (Mj , gj), j ∈ {1, 2} is called a fiber

of the biwarped product M̄ . The factor (M0, g0) is called a base manifold of M̄ . As well

known, the base manifold of M̄ is totally geodesic and the fibers of M̄ are totally umbilic in

M̄ . We say that a biwarped product manifold is trivial, if the warping functions f1 and f2

are constants. Of course, biwarped product manifolds are natural generalizations of warped

product manifolds [7] and special case of multiply warped product manifolds [14].

Let M0 ×f1 M1 ×f2 M2 be a biwarped product manifold with the Levi-Civita connection

∇̄ and ∇i denote the Levi-Civita connection of Mi for i ∈ {0, 1, 2}. By usual convenience,

we denote the set of lifts of vector fields on Mi by L(Mi) and use the same notation for a

vector field and for its lifts. On the other hand, since the map π0 is an isometry and π1 and

π2 are (positive) homotheties, they preserve the Levi-Civita connections. Thus there is no

confusion using the same notation for a connection on Mi and for its pullback via πi. Then,

the covariant derivative formulas [23] for a biwarped product manifold are given by

∇̄UV =∇0
UV (1.1)

∇̄V X =∇̄XV = V (ln fi)X (1.2)

∇̄XZ =

{
0 if i ̸= j,

∇i
XZ − g(X,Z)∇0(ln fi) if i = j,

(1.3)

where U, V ∈ L(M0), X ∈ L(Mi) and Z ∈ L(Mj).

The theory of warped product submanifolds has been become a popular research area

since Chen [8] studied the warped product CR-submanifolds in Kaehler manifolds. Actually,

several classes of warped product submanifolds appeared in the last eighteen years. Also,

warped product submanifolds have been studied for different kinds of structures. Most of

the studies related to the theory of warped product submanifolds can be found in Chen’s

book [10]. Recently, Taştan studied biwarped product submanifolds of a Kaehler manifold

(M̄, J, g) of the form MT ×f M⊥ ×σ M θ, where MT is a holomorphic, M⊥ is a totally real
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and M θ is a pointwise slant submanifold of M̄ [20]. Afterwards, biwarped product submani-

folds have been studying by many geometers for different kinds of structures (see, [2, 21, 22]).

In this paper, we study biwarped product submanifolds with a slant base factor in locally

product Riemannian manifolds. More precisely, we consider biwarped product submanifolds

of the form M θ ×f MT ×σ M⊥, where M θ is a slant, M⊥ is an anti-invariant and MT is an

invariant submanifold of the locally product Riemannian manifold. After giving a non-trivial

example and some auxiliary results, we prove an existence theorem for such submanifolds.

Then, we investigate the behavior of the second fundamental form of such a submanifold and

as a result, we get a condition for this kind of submanifold to be a warped product. Finally,

we obtain an inequality for the squared norm of the second fundamental form in terms of

the warping functions for such submanifolds. The equality case is also considered. Moreover,

we give an application of this inequality for certain types of locally product Riemannian

manifolds.

Remark 1.1. Biwarped product submanifolds of the form M θ×fM
T×σM

⊥ in locally product

Riemannian manifolds were also studied in [22]. However, expect the first four equations of

Lemma 5.1, our results are completely different from the results of [22]. Besides, biwarped

product submanifolds of the form M⊥×f M
T ×σM

θ in locally product Riemannian manifolds

were studied in [2], where M θ is a proper pointwise slant submanifold of the locally product

Riemannian manifold. But, the geometry of M θ ×f M
T ×σ M

⊥ and the geometry of M⊥ ×f

MT ×σ M θ are quite different.

2. Preliminaries

We first recall the fundamental definitions and notions needed for further study. In fact,

we will give the notions for submanifolds of Riemannian manifolds in subsection 2.1. In

subsection 2.2, we recall the definition of a locally product Riemannian manifold.

2.1. Riemannian submanifolds. LetM be a Riemannian manifold isometrically immersed

in a Riemannian manifold (M̄, g) and ∇̄ be the Levi-Civita connection of M̄ with respect to

the metric g. Also, let ∇ and ∇⊥ be the Levi-Civita connection and normal connection of

M , respectively. Then the Gauss and Weingarten formulas [24] are given respectively by

∇̄V W = ∇V W + h(V,W ) and ∇̄V Z = −AZV +∇⊥
V Z. (2.4)
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Here V,W are the tangent vector fields to M and Z is normal to M . In addition, h is the

second fundamental form and AZ is the Weingarten operator of M associated with Z. Then,

we have

g(h(V,W ), Z) = g(AZV,W ). (2.5)

For a submanifold M of a Riemannian manifold M̄ , the equation of Gauss is given by

R̄(U, V, Z,W ) = R(U, V, Z,W ) + g(h(U,Z), h(V,W ))− g(h(U,W ), h(V,Z)) (2.6)

for any U, V, Z,W ∈ Γ(TM), where R̄ and R are the curvature tensors on M̄ and M respec-

tively. The mean curvature vector H for an orthonormal frame {e1, . . . , em} of tangent space

TpM , p ∈ M on M is defined by

H =
1

m
trace(h) =

1

m

m∑
i=1

h(ei, ei), (2.7)

where m = dimM . Also, we set

hrij = g(h(ei, ej), er) and ∥ h ∥2=
m∑

i,j=1

g(h(ei, ej), h(ei, ej)). (2.8)

Moreover, the sectional curvature [24] of a plane section spanned by ei and ej , denoted by

Kij , is

Kij = R(ei, ej , ej , ei). (2.9)

The scalar curvature [9] of M of is given by

τ(TM) =
∑

1≤i ̸=j≤m

Kij . (2.10)

Let Gr be a r-plane section on TM and {e1, . . . , er} any orthonormal basis of Gr. Then the

scalar curvature τ(Gr) of Gr is given by

τ(Gr) =
∑

1≤i ̸=j≤r

Kij . (2.11)

For a smooth function f on M , the Laplacian of f is defined by

∆f =

m∑
i=1

{(∇eiei)f − ei(ei(f))} = −
m∑
i=1

g(∇ei∇f, ei), (2.12)

where ∇f is the gradient of f [9].
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2.2. Locally product Riemannian manifolds. Let M̄ be a Riemannian manifold. Sup-

pose M̄ is endowed with a tensor field

F2 = I, (F ̸= ∓I), (2.13)

of type (1, 1). Here, I is the identity endomorphism on TM̄ . Then, (M̄, g,F) called an

almost product manifold and F is called an almost product structure. Also, we assume that

g and F satisfy

g(FX̄,F Ȳ ) = g(X̄, Ȳ ), (2.14)

for all vector fields X̄, Ȳ tangent to M . Then, it is known that (M̄, g,F) is an almost product

Riemannian manifold. Let ∇̄ be the Levi-Civita connection of (M̄, g,F). If we have

∇̄F ≡ 0, (2.15)

then (M̄, g,F) is a locally product Riemannian manifold, (briefly, l.p.R. manifold).

Let M1(c1) (resp. M2(c2)) be a real space form and have sectional curvature c1 (resp. c2).

Then, the Riemannian curvature tensor R̄ of l.p.R. manifold M̄ = M1 ×M2 has the form

R̄(U, V )Z =
1

4
(c1 + c2)

{
g(V,Z)U − g(U,Z)V + g(FV,Z)FU − g(FU,Z)FV

}
=

1

4
(c1 − c2)

{
g(V,Z)FU − g(U,Z)FV + g(FV,Z)U − g(FU,Z)V

}
,

(2.16)

for all U, V, Z ∈ Γ(TM̄) [24].

3. Skew semi-invariant submanifolds of order 1 in locally product

Riemannian manifolds

We first recall the definition of the skew semi-invariant submanifolds of order 1 of a locally

product Riemannian manifold and get some useful results for the further study.

Let (M̄, g,F) be a l.p.R. manifold and let M be a submanifold of M̄ . If for X ∈ Dp, the

angle θ between FX and Dp is constant, i.e., it is independent of p ∈ M and X ∈ Dp, then

D is called a slant distribution on M . θ is said the slant angle of the slant distribution D.

Thus, the invariant and anti-invariant distributions with respect to F are slant distributions

with slant angle θ = 0 and θ = π/2, respectively. If the tangent bundle TM of M is slant

[12, 15] then the submanifold M of M̄ is called a slant submanifold. A slant submanifold

that is neither invariant nor anti-invariant is called a proper slant submanifold.
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Let M be a slant submanifold with slant angle θ of a locally product Riemannian manifold

(M̄, g,F), for any V ∈ Γ(TM), we write

FV = PV +NV. (3.17)

Here PV is the tangential part of FV and NV is the normal part of FV . Then, for any

U, V ∈ Γ(TM) we have [15]

P 2V = cos2θV, (3.18)

g(PU,PV ) = cos2θg(U, V ) and g(NU,NV ) = sin2θg(U, V ). (3.19)

A submanifold M of a locally product Riemannian manifold (M̄, g,F) is said a skew semi-

invariant submanifold of order 1 (briefly, s.s-i.) [18] if the tangent bundle TM of M has the

form

TM = D⊥ ⊕DT ⊕Dθ,

where Dθ is slant distribution with slant angle θ, DT is an invariant distribution, i.e., FDT ⊆

DT , D⊥ is an anti-invariant distribution, i.e. FD⊥ ⊆ T⊥M . In that case, the normal bundle

T⊥M of M can be decomposed as

T⊥M = N(Dθ)⊕F(D⊥)⊕ D̄T , (3.20)

where D̄T is the orthogonal complementary distribution of N(Dθ)⊕ F(D⊥) in T⊥M and it

is an invariant subbundle of T⊥M with respect to F .

Remark 3.1. The class of s.s-i. submanifolds of order 1 of locally product Riemannian

manifolds is a special subclass of skew semi-invariant submanifolds [12] and a natural gen-

eralization of invariant, anti-invariant [1], semi-invariant [6], slant [15], semi-slant [13] and

hemi-slant submanifolds [19] of locally product Riemannian manifolds.
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Lemma 3.1. [18] Let M be a proper s.s-i. submanifold of order 1 of a l.p.R. manifold

(M̄, g,F). Then,

g(∇ZW,U) = − csc2θ

{
g(ANPWZ,U) + g(ANWZ,FU)

}
, (3.21)

g(∇ZW,X) = sec2θ

{
g(AFXZ,PW ) + g(ANPWZ,X)

}
, (3.22)

g(∇UV,Z) = csc2θ

{
g(ANPZU, V ) + g(ANZU,FV )

}
, (3.23)

g(∇UV,X) = g(AFXU,FV ), (3.24)

g(∇XY, Z) = − sec2θ

{
g(AFY X,PZ) + g(ANPZX,Y )

}
, (3.25)

g(∇XY, V ) = −g(AFY X,FV ), (3.26)

g(∇XZ, V ) = − csc2θ

{
g(ANPZX,V ) + g(ANZX,FV )

}
, (3.27)

g(∇ZX,V ) = −g(AFXZ,FV ), (3.28)

g(∇UX,Z) = − sec2θ

{
g(AFXU,PZ) + g(ANPZU,X)

}
(3.29)

for Z,W ∈ Γ(Dθ), U, V ∈ Γ(DT ) and X,Y ∈ Γ(D⊥).

Theorem 3.1. Let M be a proper s.s-i. submanifold of order 1 of a locally product Riemann-

ian manifold (M̄, g,F). Then the slant distribution Dθ is totally geodesic iff the following

equations hold

g(ANPWZ, V ) = −g(ANWZ,FV ), (3.30)

g(AFXZ,PW ) = −g(ANPWZ,X), (3.31)

for Z,W ∈ Γ(Dθ), V ∈ Γ(DT ) and X ∈ Γ(D⊥).

Proof. The distribution Dθ is totally geodesic iff g(∇ZW,X) = 0 and g(∇ZW,V ) = 0 for

all Z,W ∈ Γ(Dθ), X ∈ Γ(D⊥) and V ∈ Γ(DT ). Thus, the assertions (3.30) and (3.31) follow

from (3.21) and (3.22), respectively.

Theorem 3.2. Let M be a proper s.s-i. submanifold of order 1 of a locally product Riemann-

ian manifold (M̄, g,F). Then the invariant distribution DT is integrable iff the following

equations hold

g(AFXU,FV ) = g(AFXV,FU), (3.32)

g(ANPZU, V ) + g(ANZU,FV ) = g(ANPZV,U) + g(ANZV,FU), (3.33)

for U, V ∈ Γ(DT ), X ∈ Γ(D⊥) and Z ∈ Γ(Dθ).
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Proof. The distribution DT is integrable iff g([U, V ], X) = 0 and g([U, V ], Z) = 0 for all

Z ∈ Γ(Dθ), X ∈ Γ(D⊥) and U, V ∈ Γ(DT ). Thus, the assertions (3.32) and (3.33) follow

from (3.23) and (3.24), respectively.

Theorem 3.3. Let M be a proper s.s-i. submanifold of order 1 of a locally product Rie-

mannian manifold (M̄, g,F). Then the anti-invariant distribution D⊥ is integrable iff the

following equations hold

g(AFXY,FV ) = g(AFY X,FV ), (3.34)

g(AFY X,PZ) = g(AFXY, PZ), (3.35)

for X,Y ∈ Γ(D⊥), V ∈ Γ(DT ) and Z ∈ Γ(Dθ).

Proof. The distribution D⊥ is integrable iff g([X,Y ], Z) = 0 and g([X,Y ], V ) = 0 for all

Z ∈ Γ(Dθ), X,Y ∈ Γ(D⊥) and V ∈ Γ(DT ). Thus, the assertions (3.34) and (3.35) follow

from (3.25) and (3.26), respectively.

4. Biwarped Product Submanifolds in Locally Product Riemannian Manifolds

We first check that the existence of biwarped product submanifolds of the form, MT ×f

M⊥ ×σ M
θ, M⊥ ×f M

θ ×σ M
T and Mθ ×f M

T ×σ M
⊥, where M⊥ is an anti-invariant, M θ

ia a proper slant and MT is an invariant submanifold of a l.p.R. manifold (M̄, g,F).

M. Atçeken and B. S. ahin independently proved that there do not exist (non-trivial)

warped product semi-invariant submanifolds of the form MT ×f M⊥ in a l.p.R. manifold

(M̄, g,F), such that MT is an invariant submanifold and M⊥ is an anti-invariant submani-

fold of (M̄, g,F) in [4, Theorem 3.1] and [16, Theorem 3.1], respectively. Again, M. Atçeken

and B. S. ahin independently proved that there do not exist (non-trivial) warped product

semi-slant submanifolds of the form MT ×f M
θ in a l.p.R. manifold M̄ , such that MT is an

invariant submanifold and M θ is a proper slant submanifold of M̄ in [3, Theorem 3.3] and

[17, Theorem 3.1], respectively. Thus, we obtain the following result.

Corollary 4.1. There do not exist (non-trivial) biwarped product submanifolds of the form

MT ×f M⊥ ×σ M θ of a l.p.R. manifold (M̄, g,F) such that MT is an invariant, M⊥ is an

anti-invariant and M θ is a proper slant submanifold of M̄ .

On the other hand, it was proved that there do not exist (non-trivial) warped product

submanifolds of the form M⊥×fM
θ in a l.p.R. manifold M̄ such that M⊥ is an anti-invariant
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submanifold andM θ is a proper slant submanifold of M̄ in [3, Theorem 3.4]. Thus, we deduce

the following result.

Corollary 4.2. There do not exist (non-trivial) biwarped product submanifolds of the form

M⊥ ×f M
θ ×σ MT of a l.p.R. manifold (M̄, g,F) such that M⊥ is an anti-invariant, M θ is

a proper slant submanifold and MT is an invariant submanifold of M̄ .

Now, we consider (non-trivial) biwarped product submanifolds in the form M θ×f M
T ×σ

M⊥ in a l.p.R. manifold (M̄, g,F) such that MT is an invariant, M⊥ is an anti-invariant and

M θ is a proper slant submanifold of M̄ . Firstly, we present an example of such a submanifold.

Example 4.1. Consider the 8-dimensional Euclidean space R8 with standard metric g and

almost product structure F given by

F∂1 = ∂1, F∂2 = ∂2, F∂3 = −∂3, F∂4 = −∂4,

F∂5 = ∂6, F∂6 = ∂5, F∂7 = ∂8, F∂8 = ∂7,

where ∂k = ∂
∂xk

, k ∈ {1, . . . , 8} and (x1, x2, . . . , x8) are natural coordinates of R8. Upon a

straightforward calculation, we see that (R8,F , g) is a l.p.R. manifold. Let M be a submani-

fold of (R8,F , g) given by

x1 = t sinu, x2 = t cosu, x3 =
t√
2
cos v, x4 =

t√
2
sin v

x5 = 2t sinx, x6 = 0, x7 = 2t cosx, x8 = 0,

where u, v ∈ (0, π2 ) and t > 0. Then, the local frame of TM is given by

Z =sinu∂1 + cosu∂2 +
1√
2
cos v∂3 +

1√
2
sin v∂4 + 2 sinx∂5 + 2 cosx∂7,

U =t cosu∂1 − t sinu∂2,

V =− t√
2
sin v∂3 +

t√
2
cos v∂4,

X =2t cosx∂5 − 2t sinx∂7.

After some calculation, we see that Dθ = span{Z} is a proper slant distribution with slant

angle θ = cos−1( 1
11) and DT = span{U, V } is an invariant distribution and D⊥ = span{X}

is an anti-invariant distribution. Moreover, Dθ is totally geodesic and both DT and D⊥ are
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integrable distributions. If we denote the integral manifolds of Dθ, DT and D⊥ by M θ, MT

and M⊥, respectively, then the induced metric tensor of M is

ds2 =
11

2
dt2 + t2(du2 +

1

2
dv2) + 4t2dx2

= gMθ + t2gMT + (2t)2gM⊥ .

Thus, M = M θ ×f MT ×σ M⊥ is a (non-trivial) biwarped product proper s.s-i. submanifold

of order 1 of (R8,F , g) with warping functions f = t and σ = 2t.

5. Biwarped product proper skew semi-invariant submanifolds

of order 1 of the form M θ ×f MT ×σ M⊥

First, we give a characterization for biwarped product proper s.s-i. submanifolds of order 1

of the formM θ×fM
T×σM

⊥, whereM θ is a proper slant submanifold,MT is an invariant and

M⊥ is an anti invariant submanifold of a l.p.R. manifold (M̄, g,F). After that we investigate

the behavior of the second fundamental form of such submanifolds and as a result, we give a

condition for these submanifolds to be locally warped product. Firstly, we recall the following

fact given in [11] to prove our theorem.

Remark 5.1. ([11, Remark 2.1]) Suppose that the tangent bundle of a Riemannian manifold

M splits into an orthogonal sum TM = D0 ⊕D1 ⊕ . . .⊕Dk of non-trivial distributions such

that each Dj is spherical and its complement in TM is autoparallel for j ∈ {1, 2, . . . , k}. Then

the manifold M is locally isometric to a multiply warped product M0×f1 M2×f2 × . . .×fk Mk.

Now, we give one of the main theorems of this paper.

Theorem 5.1. Let M be a (Dθ,D⊥)-mixed geodesic proper s.s-i. submanifold of order 1

of a l.p.R. manifold (M̄, g,F). Then M is a locally biwarped product submanifold of type

M θ ×f MT ×σ M⊥ iff we have

ANPZX = cos2θZ(λ)X, (5.36)

ANZV +ANPZFV = − sin2θZ(µ)FV (5.37)

for smooth functions λ and µ satisfying X(λ) = V (λ) = 0 and X(µ) = V (µ) = 0 and

g(AFXZ,PW ) = −g(ANPWZ,X), (5.38)

g(AFXU,FV ) = 0, (5.39)

g(AFY X,FU) = 0, (5.40)
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g(AFXZ,FU) = 0, (5.41)

g(AFXU,PZ) = −g(ANPZU,X), (5.42)

for Z,W ∈ Γ(Dθ), U, V ∈ Γ(DT ), X,Y ∈ Γ(D⊥).

Proof. For any Z ∈ Γ(Dθ), U ∈ Γ(DT ) and X ∈ Γ(D⊥), using (2.4) and (3.17),

g(ANPZX,U) = −g(∇̄XNPZ,U) = −g(∇̄XFPZ,U) + g(∇̄XP 2Z,U).

By using (2.13) – (2.15) and (3.18), we find

g(ANPZX,U) = −g(∇̄XPZ,FU) + cos2θg(∇̄XZ,U).

Here, using (2.4), we arrive to

g(ANPZX,U) = −g(∇XPZ,FU) + cos2θg(∇XZ,U).

So, using (1.2), we conclude that

g(ANPZX,U) = −PZ(lnσ)g(X,FU) + cos2θZ(lnσ)g(X,U) = 0. (5.43)

Since M is (Dθ,D⊥)-mixed geodesic, for W ∈ Γ(Dθ) using (2.5), we find

g(ANPZX,W ) = g(h(X,W ), NPZ) = 0. (5.44)

Next, by a similar argument, for Y ∈ Γ(D⊥), using (2.4) and (3.17), we have

g(h(X,Y ), NZ) = g(∇̄XY,NZ) = g(∇̄XY,FZ)− g(∇̄XY, PZ).

Then using (2.14),(2.15) and (1.2), we find

g(h(X,Y ), NZ) = g(∇̄XFY,Z) + PZ(lnσ)g(X,Y ).

Hence using (2.4) and (2.5), we arrive to

g(h(X,Y ), NZ) = −g(AFY X,Z) + PZ(lnσ)g(X,Y )

= −g(h(X,Z),FY ) + PZ(lnσ)g(X,Y ).

In this equation, if we interchange Z with PZ, then we have

g(h(X,Y ), NPZ) = −g(h(X,PZ),FY ) + cos2θZ(lnσ)g(X,Y ).

Since M is (Dθ,D⊥)-mixed geodesic, we conclude that

g(ANPZX,Y ) = cos2θZ(lnσ)g(X,Y ). (5.45)
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Moreover, we have X(lnσ) = V (lnσ) = 0, since σ depends only on the points of M θ. So,

we conclude that λ = lnσ. Thus, from (5.43) – (5.45), it follows that (5.36). Now, we prove

(5.37). For Z ∈ Γ(Dθ), V ∈ Γ(DT ) and X ∈ Γ(D⊥), using (2.4) and (3.17), we have

g(ANZV +ANPZFV,X) = g(ANZV,X) + g(ANPZFV,X)

= g(ANZX,V ) + g(ANPZX,FV )

= −g(∇̄XNZ, V )− g(∇̄XNPZ,FV )

= −g(∇̄XNZ, V )− g(∇̄XFPZ,FV )

+g(∇̄XP 2Z,FV ).

Using (2.14), (2.15), (3.17) and(3.18) and, we arrive to

g(ANZV +ANPZFV,X) = −g(∇̄XFZ, V ) + g(∇̄XPZ, V )− g(∇̄XPZ, V )

+ cos2θg(∇̄XZ,FV ) +X(cos2θ)g(Z,FV )

= −g(∇̄XFZ, V ) + cos2θg(∇̄XZ,FV ).

Then, using (1.2), (2.4), (2.13) – (2.15), we find

g(ANZV +ANPZFV,X) = −g(∇̄XZ,FV ) + cos2θg(∇XZ,FV )

= −g(∇XZ,FV ) + cos2θg(∇XZ,FV )

= − sin2θg(∇XZ,FV )

= − sin2θZ(lnσ)g(X,FV ).

Since g(X,FV ) = 0, we conclude that

g(ANZV +ANPZFV,X) = − sin2θZ(lnσ)g(X,FV ) = 0. (5.46)

Similarly, for Z,W ∈ Γ(Dθ) and V ∈ Γ(DT ), using (2.4) and (3.17), we have

g(ANZV +ANPZFV,W ) = g(ANZV,W ) + g(ANPZFV,W )

= g(ANZW,V ) + g(ANPZW,FV )

= −g(∇̄WNZ, V )− g(∇̄WNPZ,FV )

= −g(∇̄WNZ, V )− g(∇̄WFPZ,FV )

+g(∇̄WP 2Z,FV ).

Using (2.14), (2.15), (3.17) and (3.18), we arrive to

g(ANZV +ANPZFV,W ) = −g(∇̄WFZ, V ) + g(∇̄WPZ, V )− g(∇̄WPZ, V )

+ cos2θg(∇̄WZ,FV ) +W (cos2θ)g(Z,FV )

= −g(∇̄WFZ, V ) + cos2θg(∇̄WZ,FV )

+W (cos2θ)g(Z,FV ).
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Then, using (1.2), (2.4), (2.13) – (2.15), we find

g(ANZV +ANPZFV,W ) = −g(∇̄WZ,FV ) + cos2θg(∇WZ,FV )

+W (cos2θ)g(Z,FV )

= −g(∇WZ,FV ) + cos2 θg(∇WZ,FV ) +W (cos2θ)g(Z,FV )

= − sin2θg(∇WZ,FV ) +W (cos2θ)g(Z,FV )

= − sin2 θg(∇θ
WZ,FV ) +W (cos2θ)g(Z,FV ).

Since g(∇θ
WZ,FV ) = 0 and g(Z,FV ) = 0, we conclude that

g(ANZV +ANPZFV,W ) = − sin2θg(∇θ
WZ,FV ) +W (cos2θ)g(Z,FV ) = 0. (5.47)

On the other hand, for Z ∈ Γ(Dθ) and U, V ∈ Γ(DT ), using (2.4) and (3.17), we get

g(ANZV +ANPZFV,U) = g(ANZV,U) + g(ANPZFV,U)

= g(ANZU, V ) + g(ANPZU,FV )

= −g(∇̄UNZ, V )− g(∇̄UNPZ,FV )

= −g(∇̄UNZ, V )− g(∇̄UFPZ,FV )

+g(∇̄UP
2Z,FV ).

Using (2.14), (2.15), (3.17) and (3.18), we arrive to

g(ANZV +ANPZFV,U) = −g(∇̄UFZ, V ) + g(∇̄UPZ, V )− g(∇̄UPZ, V )

+ cos2θg(∇̄UZ,FV ) + U(cos2θ)g(Z,FV )

= −g(∇̄UFZ, V ) + cos2 θg(∇̄UZ,FV )

+U(cos2θ)g(Z,FV ).

Since U [cos2θ] = 0, using (1.2), (2.4), (2.13) – (2.15), we find

g(ANZV +ANPZFV,U) = −g(∇̄UZ,FV ) + cos2θg(∇UZ,FV )

= −g(∇UZ,FV ) + cos2θg(∇UZ,FV )

= − sin2θg(∇UZ,FV )

= − sin2θZ(ln f)g(U,FV ).

So, we conclude that

g(ANZV +ANPZFV,U) = − sin2θZ(ln f)g(FV,U). (5.48)

Moreover, we have X(ln f) = V (ln f) = 0, since f depends only on the points of M θ. So, we

conclude that µ = ln f . Thus from (5.46) – (5.48), we get (5.37).

Next, we prove (5.38) – (5.42).We know M is a biwarped product proper s.s-i. submanifold

of order 1 of a locally product Riemannian manifold (M̄, g,F). Then, for Z,W ∈ Γ(Dθ),

using (1.1), we get ∇ZW = ∇θ
ZW and for X ∈ Γ(D⊥),we have

g(∇ZW,X) = sec2θ{g(AFXZ,PW ) + g(ANPWZ,X)} = g(∇θ
ZW,X) = 0
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from (3.22). Since M θ is a proper slant submanifold, it follows that

g(AFXZ,PW ) + g(ANPWZ,X) = 0,

which gives (5.38). For U, V ∈ Γ(DT ) and X,Y ∈ Γ(D⊥), using (1.3), we get g(∇UV,X) =

g(∇T
UV − g(U, V )∇(ln f), X) = 0. Then from (3.24) we find

g(∇UV,X) = g(AFXU,FV ) = 0.

Therefore, we get (5.39). For U ∈ Γ(DT ) andX,Y ∈ Γ(D⊥), using (1.3), we get g(∇XY, U) =

g(∇⊥
XY − g(X,Y )∇(lnσ), U) = 0. Then from (3.26) we find,

g(∇XY, U) = −g(AFY X,FU) = 0.

Hence, we conclude that (5.40). For X ∈ Γ(D⊥), Z ∈ Γ(Dθ) and U ∈ Γ(DT ), using (1.2),

we write g(∇ZX,FU) = g(Z(lnσ)X,FU) = Z(lnσ)g(Z,FU) = 0. On the other hand, from

(3.28) we find

g(∇ZX,FU) = −g(AFXZ,FU) = 0.

Thus, we get (5.41). For X ∈ Γ(D⊥), Z ∈ Γ(Dθ) and U ∈ Γ(DT ), using (1.3), we have

g(∇UX,Z) = 0. Then, from (3.29) we find,

g(∇UX,Z) = − sec2θ{g(AFXU,PZ) + g(ANPZU,X)} = 0.

It follows (5.42).

Conversely, assume that M is a proper (Dθ,D⊥)-mixed geodesic s.s-i. submanifold of

order 1 of a locally product Riemannian manifold (M̄, g,F) such that (5.36) – (5.42) hold.

From (5.38), we get (3.31). On the other hand if we write FV instead of V and W instead

of Z in (5.37), we find ANWFV + ANPWV = − sin2 θW (µ)V . If we take inner product of

this equation with Z ∈ Γ(Dθ), we get

g(ANWFV +ANPWV,Z) = g(ANWZ,FV ) + g(ANPWZ, V )

= − sin2θW (µ)g(V,Z) = 0.

So, (3.30) holds. Thus from Theorem (3.1), the slant distribution Dθ is totally geodesic

and as a result, it is integrable. On the other hand, from (5.39), for all U, V ∈ Γ(DT ) and

X ∈ Γ(D⊥), we write g(AFXV,FU) = 0. Thus, g(AFXV,FU) = g(AFXU,FV ), which is
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(3.32). On the other hand, in (5.37), if we write FV instead of V , we findANZFV+ANPZV =

− sin2θZ(µ)V . If we take inner product of this equation with U ∈ Γ(DT ), we arrive at

g(ANZFV +ANPZV,U) = g(ANZFV,U) + g(ANPZV,U)

= − sin2θZ(µ)g(V,U).
(5.49)

Here, if we interchange U and V in (5.49), we find

g(ANZFU +ANPZU, V ) = g(ANZFU, V ) + g(ANPZU, V )

= − sin2θZ(µ)g(U, V ).
(5.50)

From (5.49) and (5.50), we get g(ANZU,FV )+g(ANPZU, V ) = g(ANZV,FU)+g(ANPZV,U).

This is (3.33). Thus, by Teorem 3.2, the invariant distribution DT is integrable. On the other

hand, for all X,Y ∈ Γ(D⊥) and U ∈ Γ(DT ), we have g(AFY X,FU) = 0 from (5.40). It fol-

lows that g(AFY X,FU) = g(AFXY,FU) = 0. That is (3.34). Also, we get

g(∇XY,Z) = − sec2θ{g(h(Y, PZ),FX) + g(ANPZX,Y )} from (3.25). Since M is (Dθ,D⊥)-

mixed geodesic, it follows that g(h(Y, PZ),FX) = 0. Then, we find g(∇XY,Z) = g(∇Y X,Z).

Thus (3.35) follows. Then by Theorem 3.3, the totally real distributions D⊥ is integrable.

Let M θ,MT and M⊥ be the integral manifolds of Dθ,DT and D⊥, respectively. If we denote

the second fundamental form of MT in M by hT , for U, V ∈ Γ(DT ) and X ∈ Γ(D⊥), using

(2.4), (3.24) and (5.39), we have

g(hT (U, V ), X) = g(∇UV,X) = g(AFXU,FV ) = 0. (5.51)

For any, U, V ∈ Γ(DT ) and Z ∈ Γ(Dθ), using (2.4) and (3.23), we get

g(hT (U, V ), Z) = g(∇UV,Z) = csc2θg(ANPZU, V ) + g(ANZU,FV ).

At this equation, if we use (5.37), we have

g(hT (U, V ), Z) = csc2θg(ANPZV +ANZFV,U) = −Z(µ)g(V,U).

After some calculation, we obtain

g(hT (U, V ), Z) = g(−g(U, V )∇µ,Z), (5.52)

where ∇µ is the gradient of µ. Thus, from (5.51) and (5.52), we conclude that

hT (U, V ) = −g(U, V )∇µ.

This equation says thatMT is totally umbilic inM with the mean curvature vector field−∇µ.

Now, we show that −∇µ is parallel. We have to satisfy g(∇U∇µ,E) = 0 for U ∈ Γ(DT ) and
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E ∈ (DT )
⊥ = Dθ ⊕ D⊥. Here, we can put E = Z +X, where Z ∈ Γ(Dθ) and X ∈ Γ(D⊥).

By direct computations, we obtain

g(∇U∇µ,E) = {Ug(∇µ,E)− g(∇µ,∇UE)}

= U(E(µ))− [U,E](µ)− g(∇µ,∇EU)

= [U,E](µ) + E(U(µ))− [U,E](µ)− g(∇µ,∇EU)

= −g(∇µ,∇EU) = −g(∇µ,∇ZU)− g(∇µ,∇XU),

since U(µ) = 0. Here, for any W ∈ Γ(Dθ), we have g(∇ZU,W ) = −g(U,∇ZW ) = 0, since

M θ is totally geodesic in M . Thus, ∇ZU ∈ Γ(DT ) or ∇ZU ∈ Γ(D⊥). In either case, we have

g(∇µ,∇ZU) = 0. (5.53)

On the other hand, from (3.27), we have

g(∇XU,W ) = −g(U,∇XW ) = − csc2θ{g(ANPWX,U) + g(ANWX,FU)}.

Here, using (5.37), we obtain

g(∇XU,W ) = g(W (µ)U,X) = 0.

That is, ∇XU ∈ Γ(DT ) or ∇XU ∈ Γ(D⊥). In either case, we get

g(∇µ,∇XU) = 0. (5.54)

From (5.53) and (5.54), we find

g(∇U∇µ,E) = 0.

Thus, MT is spherical, since it is also totally umbilic. Consequently, DT is spherical.

Next, we show that D⊥ is spherical. Let h⊥ denote the second fundamental form of M⊥ in

M . Then for X,Y ∈ Γ(D⊥) and U ∈ Γ(DT ), using (2.4), (3.26) and (5.40), we have

g(h⊥(X,Y ), U) = g(∇XY, U) = −g(AFY X,FU) = 0. (5.55)

On the other hand, for any Z ∈ Γ(Dθ), using (3.25)

g(h⊥(X,Y ), Z) = − sec2θ{g(h(X,PZ),FY ) + g(ANPZX,Y )}.

Since M , (Dθ,D⊥)-mixed geodesic, g(h(X,PZ),FY ) = 0. So, we have

g(h⊥(X,Y ), Z) = −g(ANPZX,Y ).

Using (5.36), we obtain

g(h⊥(X,Y ), Z) = −Z(λ)g(X,Y ).
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By a direct calculation, we get

g(h⊥(X,Y ), Z) = −g(∇λg(X,Y ), Z), (5.56)

where ∇λ is the gradient of λ. From (5.55) and (5.56), we obtain

h⊥(X,Y ) = −g(X,Y )∇λ.

So M⊥ is totally umbilic in M and the mean curvature vector field is −∇λ. What’s left

is to show that −∇λ is parallel. We have to satisfy g(∇X∇λ,E) = 0 for X ∈ Γ(D⊥) and

E ∈ (D⊥)
⊥ = Dθ ⊕DT . The proof is similar to the parallelity of −∇µ. So we omit it. −∇λ

is parallel. So, M⊥ is spherical, since it is also totally umbilic. Consequently, D⊥ is spherical.

Lastly, we prove that (DT )
⊥ = Dθ ⊕D⊥ and (D⊥)

⊥ = Dθ ⊕DT are autoparallel. In fact,

Dθ ⊕D⊥ is autoparallel iff all for four types of covariant derivatives ∇ZW,∇ZX,∇XZ,∇XY

are again in Γ(Dθ ⊕ D⊥) for Z,W ∈ Γ(Dθ) and X,Y ∈ Γ(D⊥). This is equivalent to say

that all four inner products g(∇ZW,U), g(∇ZX,U), g(∇XZ,U), g(∇XY, U) vanish, where

U ∈ Γ(DT ). Using (3.21) and (5.37), we find

g(∇ZW,U) = − csc2θ{g(ANPWZ,U) + g(ANWZ,FU)}

= − csc2θg(ANPWU +ANWFU,Z)

= W (µ)g(U,Z) = 0.

Using (3.28) and (5.41), we find

g(∇ZX,U) = −g(AFXZ,FU) = 0.

By (3.27) and (5.37), we get

g(∇XZ,U) = − csc2θ{g(ANPZX,U) + g(ANZX,FU)} = 0.

By (3.26) and (5.40), we find

g(∇XY,U) = −g(AFY X,FU) = 0.

Thus, Dθ ⊕ D⊥ is autoparallel. On the other hand, Dθ ⊕ DT is autoparallel iff all four

inner products g(∇ZW,X), g(∇ZU,X), g(∇UZ,X), g(∇UV,X) vanish, where Z,W ∈ Γ(Dθ),

U, V ∈ Γ(DT ) and X ∈ Γ(D⊥). Firstly, we have already g(∇ZU,X) = 0 from above. Using

(3.22) and (5.38), we get

g(∇ZW,X) = sec2θ{g(AFXZ,PW ) + g(ANPWZ,X)} = 0.
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Using (3.24) and (5.39), we find

g(∇UV,X) = g(AFXU,FV ) = 0.

And for last one, by (3.29) and (5.42), we get

g(∇UZ,X) = −g(∇UX,Z) = sec2θ{g(AFXU,PZ) + g(ANPZU,X)} = 0.

So, Dθ⊕DT is autoparallel. Thus by Remark 5.1, M is locally biwarped product submanifold

of the form M θ ×f MT ×σ M⊥.

Next, we investigate the behavior of the second fundamental form h of a non-trivial

biwarped product s.s-i. submanifold of order 1 of a locally product Riemannian manifold

(M̄, g,F) of the form M θ ×f MT ×σ M⊥.

Lemma 5.1. Let M be a biwarped product proper s.s-i. submanifold of order 1 of the form

M θ ×f MT ×σ M⊥ of a l.p.R. manifold (M̄, g,F). Then for h of M in (M̄, g,F), we have

g(h(U, V ), NW ) = −W (ln f)g(U,FV ) + PW (ln f)g(U, V ), (5.57)

g(h(Z,U), NW ) = 0, (5.58)

g(h(X,U), NW ) = 0, (5.59)

g(h(Z,U),FX) = 0, (5.60)

g(h(X,U),FY ) = 0, (5.61)

g(h(U, V ),FX) = 0, (5.62)

where Z,W ∈ Γ(Dθ), X,Y ∈ Γ(D⊥) and U, V ∈ Γ(DT ).

Proof. For U, V ∈ Γ(DT ) and W ∈ Γ(Dθ), using (2.4), (2.13) – (2.15) and (3.17), we have

g(h(U, V ), NW ) = g(∇̄UV,NW ) = −g(V, ∇̄UNW )

= −g(V, ∇̄UFW ) + g(V, ∇̄UPW )

= −g(FV, ∇̄UW ) + g(V,∇UPW )

= −g(FV,∇UW ) + g(V,∇UPW )

= −W (ln f)g(FV,U) + PW (ln f)g(U, V ).
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Thus, we get (5.57). Now, using (2.4), (2.13) – (2.15) and (3.17), we get

g(h(Z,U), NW ) = g(∇̄ZU,NW ) = −g(U, ∇̄ZNW )

= −g(U, ∇̄ZFW ) + g(U, ∇̄ZPW )

= −g(FU, ∇̄ZW ) + g(U,∇ZPW )

= g(W, ∇̄Z(FU))− g(∇ZU,PW )

= g(W,∇ZFU)− g(∇ZU,PW ),

for Z,W ∈ Γ(Dθ) and U ∈ Γ(DT ). Here using (1.2), we get

g(h(Z,U), NW ) = Z(ln f)g(W,FU)− Z(ln f)g(U,PW ) = 0

since g(W,FU) = g(U,PW ) = 0. So (5.58) follows. The proof of (5.59) is similar.

For Z ∈ Γ(Dθ), X ∈ Γ(D⊥) and U ∈ Γ(DT ), using (2.4), (2.13) – (2.15) and (3.17), we get

g(h(Z,U),FX) = g(∇̄ZU,FX) = −g(U, ∇̄ZFX)

= −g(FU, ∇̄ZX) = −g(FU,∇ZX)

= −Z(lnσ)g(FU,X) = 0

since g(FU,X) = 0. So (5.60) follows. Next, using (2.4), (2.13) – (2.15), (3.17) and (1.3) we

get

g(h(X,U),FY ) = g(∇̄XU,FY ) = −g(U, ∇̄XFY )

= −g(FU, ∇̄XY ) = −g(FU,∇XY )

= g(∇XFU, Y ) = 0

for U ∈ Γ(DT ) and X,Y ∈ Γ(D⊥). Thus, (5.61) follows. Lastly, using (2.4), (2.13) – (2.15),

(3.17) and (1.3) we get

g(h(U, V ),FX) = g(∇̄UV,FX) = −g(V, ∇̄UFX)

= −g(FV, ∇̄UX) = −g(FV,∇UX) = 0

for U, V ∈ Γ(DT ) and X ∈ Γ(D⊥). So, we have (5.62). The other assertions can be obtained

by a similar way.

The previous lemma shows partially us the behavior of the second fundamental form h of

the biwarped product proper s.s-i. submanifolds of order 1 of the form M θ ×f MT ×σ M⊥

in the normal subbundle N(Dθ) and F(D⊥).

Remark 5.2. The equations (5.57), (5.58), (5.59) and (5.60) also were obtained as Lemma

3.1-(ii), Lemma 3.1-(i), Lemma 3.3-(ii) and Lemma 3.3-(i), respectively in [22].

By using (5.58) – (5.61), we immediately have the following result.
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Corollary 5.1. Let M be a biwarped-product proper s.s-i. submanifold of order 1 of the

form M θ ×f MT ×σ M⊥ of a locally product Riemannian manifold (M̄, g,F) such that the

invariant normal subbundle D̄T = {0}. Then M is (DT ,D⊥) and (DT ,Dθ)-mixed geodesic.

Lastly, we give another main result of this section.

Theorem 5.2. Let M be a biwarped-product proper s.s-i. submanifold of order 1 in the form

M θ ×f MT ×σ M⊥ of a l.p.R. manifold (M̄, g,F) such that its invariant normal subbundle

D̄T = {0}. Then M is a locally warped product in the form M θ × MT ×σ M⊥ iff M is

DT -geodesic.

Proof. If M is a locally warped product of the form M θ ×MT ×σ M⊥, then the warping

function f is constant. By (5.57), we have

g(h(U, V ), NW ) = −W (ln f)g(U,FV ) + PW (ln f)g(U, V ) = 0

for U, V ∈ Γ(DT ) and W ∈ Γ(Dθ), since W (ln f) = PW (ln f) = 0. Using this fact and

(5.62), it follows that h(U, V ) = 0. Which say us M is DT -geodesic.

Conversely, let M be DT -geodesic. Then for any U, V ∈ Γ(DT ) and W ∈ Γ(Dθ), we have

W (ln f)g(U,FV ) + PW (ln f)g(U, V ) = 0 (5.63)

from (5.57). If we put W = PW in (5.63) and using (3.18), we obtain

PW (ln f)g(U,FV ) + cos2θW (ln f)g(U, V ) = 0. (5.64)

If we replace V by FV in (5.64), then (5.64) becomes

PW (ln f)g(U, V ) + cos2θW (ln f)g(U,FV ) = 0. (5.65)

From (5.63) and (5.65), we get

sin2θW (ln f)g(U,FV ) = 0 (5.66)

for any U, V ∈ Γ(DT ) and W ∈ Γ(Dθ). Since (5.66) is true for any U, V ∈ Γ(DT ), it is also

true for FV ∈ Γ(DT ). So (5.66) becomes

sin2θW (ln f)g(U, V ) = 0. (5.67)

Since M is proper, sinθ ̸= 0, we can deduce that W (ln f) = 0 from (5.67). Namely, we find

f as a constant. Thus, M must be a locally warped product in the form M θ ×MT ×σ M⊥.
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6. An inequality for non-trivial biwarped product s.s-i. submanifolds of

order 1 of the form M θ ×f MT ×σ M⊥

In this section, we shall establish an inequality for the squared norm of the second fun-

damental form in terms of the warping functions for biwarped product skew semi-invariant

submanifolds of order 1 of the form M θ ×f MT ×σ M⊥, where M θ is a proper slant, MT is

a invariant and M⊥ is an anti-invariant submanifold in a l.p.R. manifold (M̄, g,F).

Let M0×f1 M1×f2 M2 be a biwarped product submanifold in a Riemannian manifold M̄ .

Then from [9], we write

K(X0, Xi) = K0i =
1

fi
((∇X0X0)(fi)−X0(X0(fi)))

K(Xi, Xj) = Kij = −g(∇fi,∇fj)

fifj
, i, j = 1, 2,

(6.68)

for each unit vectorXi tangent toMi. If we consider the local orthonormal frame {e1, e2, . . . , em}

of TM , in view of Gauss equation (2.6), we derive

τ(TM) = τ̄(TM) +

m̄∑
r=m+1

∑
1≤i ̸=j≤m

(
hriih

r
jj − (hrij)

2

)
, (6.69)

where m̄−m = dimT⊥M .

Now we are ready to prove the general inequality. Let M be a m = m0 + m1 + m2-

dimensional biwarped product s.s-i. submanifolds of order 1 of type M θ ×f M
T ×σ M

⊥ in a

locally product Riemannian manifold (M̄, g,F). A canonical orthonormal basis is given by

{e1, . . . , em0 , em0+1, . . . , em0+m1 , em0+m1+1, . . . , em0+m1+m2 , em+1, . . . , em̄} of TM̄ such that

{e1, . . . , em0} is an orthonormal basis of TM θ, {em0+1, . . . , em0+m1} is an orthonormal basis

of TMT , {em0+m1+1, . . . , em0+m1+m2} is an orthonormal basis of TM⊥, {em+1, . . . , em̄} is an

orthonormal basis of T⊥M .

Theorem 6.1. Let M = M θ×fM
T×σM

⊥ be an m-dimensional non-trivial biwarped product

s.s-i. submanifold M of order 1 of an m̄-dimensional locally product Riemannian manifold

(M̄, g,F). Then

(i) the second fundamental form of M satisfies

1
2 ∥ h ∥2≥ τ̄(TM)− τ̄(TM θ)− τ̄(TMT )− τ̄(TM⊥)

−m1
∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ
,

(6.70)
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where m1 = dimMT and m2 = dimM⊥.

(ii) The equality case of the inequality (6.70) holds identically iff M θ is also totally geo-

desic in M̄ , and both MT and M⊥ are totally umbilic in M̄ .

Proof. Putting U = W = ei and V = Z = ej in Gauss equation (2.6), we obtain

R̄(ei, ej , ej , ei) = R(ei, ej , ej , ei) + g(h(ei, ej), h(ei, ej))− g(h(ei, ei), h(ej , ej)).

Taking summation, over 1 ≤ i, j ≤ m(i ̸= j) in above equation, we obtain

2τ̄(TM) = 2τ(TM)−m2 ∥ H ∥2 + ∥ h ∥2 .

Then from (2.11), we derive

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−

∑
1≤i<j≤m0

Kij

−
∑

m0+1≤i<j≤m0+m1

Kij −
∑

m0+m1+1≤i<j≤m0+m1+m2

Kij −
m0∑
i=1

m0+m1∑
j=m0+1

Kij

−
m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij −
m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij .

Hence, we obtain

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)− τ(TM θ)− τ(TMT )− τ(TM⊥)

−
m0∑
i=1

m0+m1∑
j=m0+1

Kij −
m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij −
m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij .

Last three terms of first line of above equation can be obtained by using (6.69), then we get

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)

−τ̄(TM θ)−
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(
hriih

r
tt − (hrit)

2

)
−τ̄(TMT )−

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(
hrjjh

r
ll − (hrjl)

2

)
−τ̄(TM⊥)−

m̄∑
r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(
hraah

r
bb − (hrab)

2

)

−
m0∑
i=1

m0+m1∑
j=m0+1

Kij −
m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij −
m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij .

(6.71)

Now, using (6.68), for a biwarped product submanifold, we find

m0∑
i=1

m0+m1∑
j=m0+1

Kij = m1
∆f

f
,

m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij = m2
∆σ

σ
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and

m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij = −m1m2
g(∇f,∇σ)

fσ
.

If we use these equations in (6.71), we obtain

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)−
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(
hriih

r
tt − (hrit)

2

)
−τ̄(TMT )−

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(
hrjjh

r
ll − (hrjl)

2

)
−τ̄(TM⊥)−

m̄∑
r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(
hraah

r
bb − (hrab)

2

)
.

If we arrange this equation, we arrive to

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)− τ̄(TMT )− 2τ̄(TM⊥)
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(hrit)
2 +

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjl)
2

+

m̄∑
r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hrab)
2 −

m̄∑
r=m+1

∑
1≤i ̸=t≤m0

(hriih
r
tt)

−
m̄∑

r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjjh
r
ll)

−
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hraah
r
bb).
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Adding and substracting the term
1

2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)

in the above equation,

we find that

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)− τ̄(TMT )− τ̄(TM⊥)

+
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(hrit)
2 +

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjl)
2

+
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hrab)
2 −

m̄∑
r=m+1

∑
1≤i ̸=t≤m0

(hriih
r
tt)

−
m̄∑

r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjjh
r
ll)

−
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hraah
r
bb)

+
1

2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)

−1

2

m̄∑
r=m+1

(
(hr11)

2) + . . .+ (hrmm)2
)
.

(6.72)

Here, by (2.7), we have

∥ H ∥2= 1

m2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)
+ 2

m̄∑
r=m+1

∑
1≤i ̸=j≤m

(hriih
r
jj).

Using this equation in (6.72), we obtain

1

2
∥h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)− τ̄(TMT )− τ̄(TM⊥)

+

m̄∑
r=m+1

∑
1≤i ̸=t≤m0

(hrit)
2 +

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjl)
2

+
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hrab)
2 − m2

2
∥ H ∥2

+
1

2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)
.

(6.73)

Now, the inequality (6.70) comes from (6.73). The equality sign in (6.70) holds iff

m̄∑
r=m+1

∑
1≤i ̸=t≤m

(hrit)
2 = 0 and

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)

= 0.

(6.74)
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It follows that, hrij = g(h(ei, ej), er) = 0 for i, j ∈ 1, . . . ,m and r ∈ m+ 1, . . . , m̄. Which

says us h ≡ 0. For a biwarped product submanifold of the form M = M θ ×f M
T ×σ M

⊥, we

know already that M θ is totally geodesic in M and both MT and M⊥ are totally umbilic in

M . Since, the second fundamental form h of M vanishes, identically, it follows that M θ is

also totally geodesic in M̄ and both MT and M⊥ are also totally umbilic in M̄ .

Now we give an application of the inequality (6.70).

Theorem 6.2. Let M = M θ×fM
T×σM

⊥ be an m-dimensional non-trivial biwarped product

s.s-i. submanifold M of order 1 of an m̄-dimensional locally product Riemannian manifold

(M̄ = M1(c1) ×M2(c2),F , g). Then the squared norm of the second fundemental form h of

M satisfies

∥ h ∥2 ≥ 1

2
(c1 + c2)

(
m0m1 +m0m2 +m1m2

)
− 2m1

∆f

f
− 2m2

∆σ

σ

+2m1m2
g(∇f,∇σ)

fσ
,

(6.75)

where m0 = dimM θ, m1 = dimMT , m2 = dimM⊥ and m0 +m1 +m2 = m.

Proof. In (2.16), substituting X = ei, Y = Z = ej and take inner product with ei in the

above equation, we obtain

R̄(ei, ej , ej , ei) =
1

4
(c1 + c2)

{
g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)

+g(Fej , ej)g(Fei, ei)− g(Fei, ej)g(Fej , ei)

}
+
1

4
(c1 − c2)

{
g(ej , ej)g(Fei, ei)− g(ei, ej)g(Fej , ei)

+g(Fej , ej)g(ei, ei)− g(Fei, ej)g(ej , ei)

}
.

Taking summation over basis vectors of TM for 1 ≤ i ̸= j ≤ m, we get

2τ̄(TM) =
1

4
(c1 + c2)

{ ∑
1≤i ̸=j≤m

g(ej , ej)g(ei, ei)−
∑

1≤i ̸=j≤m

g(ei, ej)
2

+
∑

1≤i ̸=j≤m

g(Fej , ej)g(Fei, ei)−
∑

1≤i ̸=j≤m

g(Fei, ej)g(Fej , ei)

}
+
1

4
(c1 − c2)

{ ∑
1≤i ̸=j≤m

g(ej , ej)g(Fei, ei)−
∑

1≤i ̸=j≤m

g(ei, ej)g(Fej , ei)

+
∑

1≤i ̸=j≤m

g(Fej , ej)g(ei, ei)−
∑

1≤i ̸=j≤m

g(Fei, ej)g(ej , ei)}
}
.

Let M be an m-dimensional non-trivial biwarped product s.s-i. submanifold M of order 1

of an m̄-dimensional locally product Riemannian manifold M̄ = M1(c1) × M2(c2) in the

form M θ ×f MT ×σ M⊥. We choose the orthonormal frame fields of TM θ and TMT



INT. J. MAPS MATH. (2022) 5(2):154–181 / BIWARPED PRODUCT SUBMANIFOLDS 179

as {e1 = sec θPe1, . . . , em0 = sec θPem0} and {Fem0+1 = em0+1, . . . ,Fet = et,Fet+1 =

−et+1, . . . ,Fem0+m1 = −em0+m1}, respectively. Also, we choose the orthonormal frame fields

of TM⊥ as {em0+m1+1, . . . , em0+m1+m2}. Here, for 1 ≤ i ≤ m0, we have g(Fei, ei) = cosθ

and for 1 ≤ i ̸= j ≤ m0, we have g(Fei, ej) = 0, since M θ is a slant submanifold with slant

angle θ. Also, for m0 + 1 ≤ i ≤ t, we have g(Fei, ei) = 1 and for t + 1 ≤ i ≤ m0 + m1,

we have g(Fei, ei) = −1. Moreover, for m0 + m1 + 1 ≤ i ≤ m0 + m1 + m2 = m, we have

g(Fei, ei) = 0 and for m0 +m1 + 1 ≤ i ̸= j ≤ m0 +m1 +m2 = m, we have g(Fei, ej) = 0,

since M⊥ is an anti-invariant submanifold. Thus, using these facts, we obtain the following∑
m0+1≤i ̸=j≤m0+m1

g(Fej , ej)g(Fei, ei) = m1 − 3,

∑
1≤i ̸=j≤m0

g(Fej , ej)g(Fei, ei) = (m0 − 1) cos2θ,

∑
m0+1≤i ̸=j≤m0+m1

g(ej , ej)g(Fei, ei) = 2t−m1 − 1,

∑
1≤i ̸=j≤m0

g(ej , ej)g(Fei, ei) = (m0 − 1) cosθ,

∑
m0+m1+1≤i ̸=j≤m

g(Fej , ej)g(Fei, ei) =
∑

m0+m1+1≤i ̸=j≤m

g(ej , ej)g(Fei, ei) = 0,

and ∑
1≤i ̸=j≤m

g(Fei, ej)g(ej , ei) =
∑

1≤i ̸=j≤m

g(Fei, ej)g(Fej , ei) = 0.

Thus, we find

2τ̄(TM) =
1

4
(c1 + c2)

{
m(m− 1) +m1 − 3 + (m0 − 1) cos2θ

}
+
1

4
(c1 − c2)

{
2(2t−m1 − 1) + 2(m0 − 1) cosθ

}
.

(6.76)

Similarly for TM θ, TMT and TM⊥, we derive

2τ̄(TM θ) =
1

4
(c1 + c2)

{
m0(m0 − 1) + (m0 − 1) cos2θ

}
+
1

4
(c1 − c2)

{
2(m0 − 1) cos θ

} (6.77)

2τ̄(TMT ) =
1

4
(c1 + c2)

{
m1(m1 − 1) +m1 − 3

}
+
1

4
(c1 − c2)

{
2(2t−m1 − 1)

} (6.78)

2τ̄(TM⊥) =
1

4
(c1 + c2)

{
m2(m2 − 1)

}
. (6.79)

Thus, using (6.76) – (6.79) in (6.70), we get the inequality (6.75).
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Department of Mathematics, Faculty of Science, İstanbul University, İstanbul 34134, Turkey
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