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1. Introduction

In Riemannian (as well as semi-Riemannian) manifolds, different geometric structures

such as almost complex structures, almost product structures, almost contact structures,

almost paracontact structures etc. allow rich differential and geometric features to emerge

while investigating geometry of submanifolds.

A solution of the equation x2 − x − 1 = 0, the number ϕ = 1+
√
5

2 = 1.618..., is known

as the Golden ratio and it is also considered to be the order relation that gives the best

harmony and proportions in art and architecture since ancient times. As a generalization of

the Golden ratio, Spinadel introduced metallic means family or metallic proportions in [24].
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Members of metallic means family, namely (p, q) metallic numbers, are the positive solutions

of the equation x2 − px− q = 0 and denoted by

σp,q =
p+

√
p2 + 4q

2
, (1.1)

where p and q are positive integer numbers. The well-known members of the metallic means

family are the Golden mean, the Silver mean, the Bronze mean; the Copper mean etc. These

means constitute a bridge between mathematics, physics and art.

In recent years, inspired by the Golden mean and the metallic mean, the Golden struc-

ture and the metallic structure on Riemannian manifolds were introduced in [10] and [18],

respectively. Golden Riemannian manifolds, considered an important subclass of metallic

Riemannian manifolds and their submanifolds, have extensively been studied by many ge-

ometers (see [13, 11, 15, 16, 17]).

In 2006, by a different approach, Kalia [21] introduced a new Bronze mean and studied

Bronze Fibonacci and Lucas numbers. The author revealed the relationship between the

convergents of continued fractions of the power of Bronze means and the Bronze Fibonacci

and Lucas numbers. Note that, unlike the Bronze mean contained by the metallic means

family defined in [24], that new Bronze mean given by Kalia [21] can not be expressed with

σp,q, for positive integers p and q.

Considering the differentiable structure that may occur on a semi-Riemannian manifold

depending on the Bronze mean given by [21] and the study on a Riemannian manifold with

the Golden structure [10], a new type of manifold equipped with the Bronze structure was

introduced by Şahin [26] and the author named it an almost poly-Norden manifold. After

then, Perktaş [28] studied submanifolds of almost poly-Norden Riemannian manifolds and

examined fundamental geometric features of such submanifolds with the induced structure

provided by the almost poly-Norden structure of the ambient manifold.

Slant submanifolds were first defined by Chen (see, [8], [9]) in complex manifolds. Later,

submanifolds of this type have begun to be widely studied on different manifolds. For slant

submanifolds in almost contact metric manifolds, in Sasakian manifolds, in para-Hermitian

manifolds and in almost product manifolds we refer to [2, 3, 4, 7, 6, 22, 25]. Invariant, anti-

invariant, semi-invariant, slant, semi-slant, hemi-slant and bi-slant submanifolds of a metallic

Riemannian manifold were studied in [5, 19, 20]. Some types of lightlike submanifolds of a

Golden semi-Riemannian manifold and metallic semi-Riemannian manifold were introduced

in [1, 12, 14, 23, 27].
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In the present paper, we study slant submanifolds of an almost poly-Norden Riemannian

manifold and give examples. Also we investigate conditions for the normality of the induced

structure provided by the almost poly-Norden structure of the ambient manifold.

2. Preliminaries

The Bronze mean introduced by Kalia [21] is the positive solution of x2−mx+1 = 0,which

is defined by

Bm =
m+

√
m2 − 4

2
. (2.2)

For detailed reading on the relations between Bronze Fibonacci numbers, Bronze Lucas

numbers and family of sequences given by the recurrences, we refer to [21].

Inspired by the Bronze mean given by (2.2), Şahin [26], defined a structure on a dif-

ferentiable manifold, precisely the Bronze structure. A differentiable manifold M̂ with a

(1, 1)-tensor field Φ̂ satisfying

Φ̂2 = mΦ̂− I, (2.3)

where I is the identity operator on the set of cross sections of tangent bundle TM̂ denoted

by Γ(TM̂), is called an almost poly-Norden manifold equipped with a poly-Norden structure

Φ̂. Also, an almost poly-Norden manifold (M̂, Φ̂) having a semi-Riemannian metric ĝ which

is Φ̂-compatible, i.e.,

g(Φ̂X, Φ̂Y ) = mg(Φ̂X,Y )− g(X,Y ), (2.4)

equivalent to

g(Φ̂X,Y ) = g(X, Φ̂Y ), (2.5)

for any X,Y ∈ Γ(TM̂), is called an almost poly-Norden semi-Riemannian manifold [26].

Every complex structure F̂ allows to reduce two poly-Norden structures to a semi-Riemannian

manifold given by [26]:

Φ̂1 =
m

2
I +

√
4−m2

2
F̂ , Φ̂2 =

m

2
I −

√
4−m2

2
F̂ , −2 < m < 2.

Conversely, every poly-Norden structure Φ̂ give rise to define two almost complex structures

in the followings [26]:

F̂1 = − m√
4−m2

I +
2√

4−m2
Φ̂, F̂2 =

m√
4−m2

I − 2√
4−m2

Φ̂, −2 < m < 2.

A poly-Norden semi-Riemannian manifold is an almost poly-Norden semi-Riemannian man-

ifold with a parallel poly-Norden structure Φ̂ with respect to Levi-Civita connection ∇̂ on

the manifold. The integrability of Φ̂ is defined by vanishing of the its Nijenhuis tensor field
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NΦ̂(X,Y ) := [Φ̂X, Φ̂Y ] − Φ̂[Φ̂X,Y ] − Φ̂[X, Φ̂Y ] + Φ̂2[X,Y ], for any X,Y ∈ Γ(TM̂). Note

that NΦ̂ = 0 is equivalent to ∇̂Φ̂ = 0, where ∇̂ is the Levi-Civita connection on M̂ . It was

shown that in case of m is being zero every Norden manifold becomes an almost poly-Norden

manifold [26].

Throughout the paper we will consider m ̸= 0.

3. Submanifolds of almost poly-Norden Riemannian manifolds

Let (M̂, Φ̂, g) be an (n + k)-dimensional almost poly-Norden Riemannian manifold and

M be an n-dimensional isometrically immersed submanifold of M̂ . For any X ∈ Γ(TM) and

U ∈ Γ(TM⊥), we put

Φ̂X = fX + wX, (3.6)

Φ̂U = BU + CU, (3.7)

where fX (resp., wX) is the tangential (resp., normal) part of Φ̂X and BU (resp., CU) is

the tangential (resp., normal) part of Φ̂U.

From (2.5) and (3.7) one can easily see that

g(fX, Y ) = g(X, fY ), ∀X,Y ∈ Γ(TM), (3.8)

g(CU, V ) = g(U,CV ), ∀U, V ∈ Γ(TM⊥). (3.9)

Also, the maps w and B are related by g(wX,U) = g(X,BU), for any X ∈ Γ(TM) and

U ∈ Γ(TM⊥).

Denoting by ∇̂ and ∇, the Levi-Civita connections on M and M̂ , respectively, then Gauss

and Weingarten formulas are given as follows:

∇̂X Y = ∇X Y +

k∑
β=1

hβ(X,Y )Nβ, (3.10)

∇̂X Nβ = −ANβ
X +

k∑
γ=1

σβγ(X)Nγ , (3.11)

for any X,Y ∈ Γ(TM) and an orthonormal basis {N1, ..., Nk} of TM⊥, where β, γ ∈

{1, ..., k}. Here, h(X,Y ) =
k∑

β=1

hβ(X,Y )Nβ and ANβ
is the shape operator in the direc-

tion of Nβ defined by g(ANβ
X,Y ) = hβ(X,Y ). Also, σβγ (1 ≤ β, γ ≤ k) denotes the

1-forms on the submanifold M which satisfy ∇̂⊥
X Nβ =

k∑
γ=1

σβγ(X)Nγ . Note that by taking

the covariant derivative of g(Nβ, Nγ) = δβγ on M , one gets σβγ = −σγβ.
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For any X ∈ Γ(TM), Φ̂X and Φ̂Nβ (1 ≤ β ≤ k) can be written respectively in the follow-

ing forms:

Φ̂X = fX +
k∑

β=1

υβ(X)Nβ, (3.12)

Φ̂Nβ = ζβ +

k∑
γ=1

θβγ Nγ , (3.13)

where f is a tensor field of type (1, 1) on M which transforms tangent vector field X on M

to the tangential component of Φ̂X, υβ are 1-forms and θβγ are differentiable real valued

functions on M providing a k × k matrix denoted by (θβγ)k×k.

Since g(Φ̂X,Nβ) = g(X, Φ̂Nβ) and g(Φ̂Nβ, Nγ) = g(Nβ, Φ̂Nγ), by using (2.4) and (3.8)

we have

Lemma 3.1. [28] In a submanifold M of an almost poly-Norden Riemannian manifold

(M̂, Φ̂, g), we have

υβ(X) = g(Φ̂X,Nβ) = g(X, ζβ), (3.14)

g(fX, fY ) = mg(X, fY )− g(X,Y ) +

k∑
β,γ=1

υβ(X)υγ(Y ), (3.15)

θβγ = θγβ, (3.16)

for any X,Y ∈ Γ(TM) and 1 ≤ β, γ ≤ k.

Proposition 3.1. [28] Let M be an n-dimensional isometrically immersed submanifold of an

(n+k)-dimensional almost poly-Norden Riemannian manifold (M̂, Φ̂, g). Then the structure

(f, g, υβ, ζβ, (θβγ)k×k) on M induced by the almost-poly Norden structure of M̂ satisfies

(∇X f)Y =
k∑

β=1

{
g(wY,Nβ)ANβ

X + hβ(X,Y )BNβ

}
, (3.17)

f2X = mfX −X −
k∑

β=1

υβ(X)ζβ, (3.18)

υβ(fX) = mυβ(X)−
k∑

γ=1

θβγυγ(X), (3.19)

υγ(ζβ) = mθβγ − δβγ −
k∑

λ=1

θβλθλγ , (3.20)

f ζβ = mζβ −
k∑

γ=1

θβγζγ , (3.21)
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for any X ∈ Γ(TM). Moreover, in case of M̂ is being a poly-Norden semi-Riemannian

manifold, we have

f ANβ
X +∇X ζβ −

k∑
γ=1

θβγANγ X −
k∑

γ=1

σβγ(X)ζγ = 0. (3.22)

4. Slant Submanifolds

Let M be a submanifold of an almost poly-Norden Riemannian manifold (M̂, Φ̂, g). By

using the Cauchy-Schwartz inequality, namely,

g(Φ̂X, fX) ≤
∥∥∥Φ̂X∥∥∥ ∥fX∥ , ∀X ∈ Γ(TM),

we can state that there exists a function θ : TxM →
[
0, π2

]
satisfying∣∣∣g(Φ̂X, fX)

∣∣∣ = cos θ(X)
∥∥∥Φ̂X∥∥∥ ∥fX∥ ,

for any X ∈ Γ(TM). Here θ(X) is called the Wirtinger angle of X.

Now we define the slant submanifolds of an almost poly-Norden Riemannian manifold

similar to the definition given in [8]:

Definition 4.1. Let M be a submanifold of an almost poly-Norden Riemannian manifold

(M̂, Φ̂, g). If for any X ∈ Γ(TM) the angle θ(X) between Φ̂X and TxM does not depend on

Xx ∈ TxM , then M is called a slant submanifold of (M̂, Φ̂, g).

In this case, θ is called the slant angle of M . Furthermore, we have

cos θ =
g(Φ̂X, fX)∥∥∥Φ̂X∥∥∥ ∥fX∥

=
∥fX∥∥∥∥Φ̂X∥∥∥ , (4.23)

for any X ∈ Γ(TM) and Φ̂X ̸= 0. The invariant and anti-invariant submanifolds of an

almost poly-Norden Riemannian manifold are slant submanifolds with the slant angle θ = 0

and θ = π
2 , respectively.

Proposition 4.1. Let M be an n-dimensional submanifold of an (n+k)-dimensional almost

poly-Norden Riemannian manifold (M̂, Φ̂, g). If M is a slant submanifold with the slant angle

θ, then we have

g(fX, fY ) = cos2 θ{mg(Φ̂X,Y )− g(X,Y )}, (4.24)

g(wX,wY ) = sin2 θ{mg(Φ̂X,Y )− g(X,Y )}, (4.25)

for any X,Y ∈ Γ(TM).
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Proof. Since M is a slant submanifold with the slant angle θ, then by putting X + Y

instead of X in (4.23) we get

cos2 θg(Φ̂X, Φ̂Y ) = g(fX, fY ). (4.26)

From (2.4) and the last equation we obtain (4.24).

On the other hand, using (3.6) we write

g(Φ̂X, Φ̂Y ) = g(fX, fY ) + g(wX,wY ),

which implies

g(wX,wY ) = (1− cos2 θ){mg(Φ̂X,Y )− g(X,Y )}

via (4.24) and (2.4). Hence we obtain (4.25).

Theorem 4.1. A submanifold M of an almost poly-Norden Riemannian manifold (M̂, Φ̂, g)

is slant if and only if there exists a constant λ ∈ [0, 1] such that

f 2 = λ (mf − I) . (4.27)

Proof. Since M is a slant submanifold, from (3.8) and (4.24) we write

g(f 2X,Y ) = g(fX, fY ) = cos2 θ{mg(Φ̂X,Y )− g(X,Y )}

= cos2 θg(mfX −X,Y ),

for any X,Y ∈ Γ(TM), which implies

f 2X = cos2 θ (mf − I) (X).

For λ = cos2 θ gives (4.27).

Conversely, assume that there exists a constant λ ∈ [0, 1] which satisfies (4.27). Then, for

any X ∈ Γ(TM) with fX ̸= 0, we have

cos θ =
g(Φ̂X, fX)∥∥∥Φ̂X∥∥∥ ∥fX∥

=
g(X, f2X)∥∥∥Φ̂X∥∥∥ ∥fX∥

= λ
mg(Φ̂X,X)− g(X,X)∥∥∥Φ̂X∥∥∥ ∥fX∥

.

By using (2.4) in the last equation we get cos θ = λ
∥Φ̂X∥
∥fX∥ , which shows that

cos2 θ = λ = constant and hence, M is a slant submanifold. This completes the proof.
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Proposition 4.2. If M is a slant submanifold with the slant angle θ of an (n+k)-dimensional

almost poly-Norden Riemannian manifold (M̂, Φ̂, g), then we have

(∇Xf 2)Y = m cos2 θ(∇Xf)Y, (4.28)

for any X,Y ∈ Γ(TM).

Proof. From (4.27), for all X,Y ∈ Γ(TM), we write

∇Xf 2Y = cos2 θ(m∇XfY −∇XY )

and

f 2(∇XY ) = cos2 θ(mf ∇XY −∇XY ),

which completes the proof.

Hence, from (3.17) and (4.28) we give

Proposition 4.3. Let M be an n-dimensional slant submanifold of an (n+ k)-dimensional

poly-Norden Riemannian manifold (M̂, Φ̂, g). Then, for any X,Y ∈ Γ(TM), we have

(
∇Xf 2

)
Y = m cos2 θ

k∑
β=1

{
υβ(Y )ANβ

X + hβ(X,Y )ζβ
}
.

Proposition 4.4. If M is a slant submanifold with the slant angle θ (θ ̸= π
2 ) of an (n+ k)-

dimensional poly-Norden Riemannian manifold (M̂, Φ̂, g), then we have

f 2 = cot2 θ

k∑
β=1

νβ ⊗ ζβ.

Proof. It follows from (3.18) and (4.27).

Example 4.1. Let R4 be the 4-dimensional real number space with a coordinate system

(x, y, z, t). We define

Φ̂ : R4 → R4

(x, y, z, t) → Φ̂(x, y, z, t) = (Bmx,Bmy, (m−Bm) z, (m−Bm) t) ,

where Bm = m+
√
m2−4
2 . Then (R4, Φ̂) is an almost poly-Norden manifold [26]. If we con-

sider usual scalar product ⟨., .⟩ on R4, then we see that it is Φ̂-compatible and (R4, Φ̂, ⟨., .⟩)

is an almost poly-Norden Riemannian manifold. Now assume that M is a submanifold of

(R4, Φ̂, ⟨., .⟩) defined by the immersion

Ω(u1, u2) = (u1 + u2, u1 − u2,
√
2u2,

√
2u1).
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In this case, TM is generated by

X = (1, 1, 0,
√
2), Y = (1,−1,

√
2, 0).

One can see that

Φ̂X =
(
Bm, Bm, 0,

√
2(m−Bm)

)
, Φ̂Y =

(
Bm,−Bm,

√
2(m−Bm), 0

)
,

and 〈
Φ̂X,X

〉
= 2(Bm + (m−Bm)) = 2m =

〈
Φ̂Y, Y

〉
,

∥X∥ = ∥Y ∥ = 2,
∥∥∥Φ̂X∥∥∥ =

∥∥∥Φ̂Y ∥∥∥ =
√

2 (m2 − 2),

which imply that M is a slant submanifold of
(
R4, Φ̂, ⟨., .⟩

)
with the slant angle

θ = cos−1

(
m√

2 (m2 − 2)

)
, −

√
2 < m <

√
2.

Example 4.2. Consider the almost poly-Norden structure given by

Φ̂(xi, yj , t) =
(
Bmxi, B̄myj , Bmt

)
, 1 ≤ i, j ≤ 4,

and the scalar product ⟨., .⟩ on R9. Then (R9, Φ̂, ⟨., .⟩) is an almost poly-Norden Riemannian

manifold. Now let M be a submanifold of (R9, Φ̂, ⟨., .⟩) by

Ψ(u, v, w, z) = (B̄mu cos θ, B̄mv cos θ, B̄mw cos θ, B̄mz cos θ,

Bmu sin θ,Bmv sin θ,Bmw sin θ,Bmz sin θ, 0).

In this case the tangent bundle of the submanifold is generated by

E1 = (B̄m cos θ, 0, 0, 0, Bm sin θ, 0, 0, 0, 0),

E2 = (0, B̄m cos θ, 0, 0, 0, Bm sin θ, 0, 0, 0),

E3 = (0, 0, B̄m cos θ, 0, 0, 0, Bm sin θ, 0, 0),

E4 = (0, 0, 0, B̄m cos θ, 0, 0, 0, Bm sin θ, 0).

Then we calculate

Φ̂E1 = (cos θ, 0, 0, 0, sin θ, 0, 0, 0, 0),

Φ̂E2 = (0, cos θ, 0, 0, 0, sin θ, 0, 0, 0),

Φ̂E3 = (0, 0, cos θ, 0, 0, 0, sin θ, 0, 0),

Φ̂E4 = (0, 0, 0, cos θ, 0, 0, 0, sin θ, 0).
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and 〈
Φ̂Ek, Ek

〉
= B̄m cos2 θ +Bm sin2 θ,

∥Ek∥ =

√
B̄2

m cos2 θ +B2
m sin2 θ,∥∥∥Φ̂Ek

∥∥∥ = 1,

where 1 ≤ k ≤ 4, which imply that〈
Φ̂Ek, Ek

〉
∥∥∥Φ̂Ek

∥∥∥ ∥Ek∥
=

B̄m cos2 θ +Bm sin2 θ√
B̄2

m cos2 θ +B2
m sin2 θ

.

Hence M is a 4-dimensional slant submanifold of (R9, Φ̂, ⟨., .⟩) with the slant angle t given

by

cos t =
B̄m cos2 θ +Bm sin2 θ√
B̄2

m cos2 θ +B2
m sin2 θ

.

5. Nijenhuis Tensor Field and Normality of the Structure

Let M be an n-dimensional isometrically immersed submanifold of an (n+k)-dimensional

almost poly-Norden Riemannian manifold (M̂, Φ̂, ĝ). We consider the structure

Π = (f, g, υβ, ζβ, (θβγ)k×k)

on M induced by the almost poly-Norden structure of M̂ which satisfies the properties given

by Proposition 3.1.

Definition 5.1. Let M be an n-dimensional submanifold of an (n+ k)-dimensional almost

poly-Norden Riemannian manifold (M̂, Φ̂, g). The structure Π is called normal if the Nijen-

huis torsion tensor field of f satisfies

Nf = 2

k∑
β=1

dυβ ⊗ ζβ.

Lemma 5.1. If M is an n-dimensional submanifold of an (n+ k)-dimensional poly-Norden

Riemannian manifold (M̂, Φ̂, g) and Π = (f, g, υβ, ζβ, (θβγ)k×k) is the induced structure on

M , then we have

Nf (X,Y ) =
k∑

β=1

{g(X, ζβ)BβY − g(Y, ζβ)BβX − g(BβX,Y )ζβ} , (5.29)
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2dυβ(X,Y ) = −g(BβX,Y ) +

k∑
γ=1

{σβγ(X)g(Y, ζγ)− σβγ(Y )g(X, ζγ)} , (5.30)

where Aβ = ANβ
and Bβ = fAβ −Aβf , 1 ≤ β ≤ k.

Proof. Since the Nijenhuis torsion tensor field of f is given by

Nf (X,Y ) = (∇fXf)Y − (∇fY f)X − f [(∇Xf)Y − (∇Y f)X] ,

then by using (3.17) we have

Nf (X,Y ) =
k∑

β=1

 g(wY,Nβ)ANβ
fX + g(ANβ

fX, Y )ζβ − g(wX,Nβ)ANβ
fY

−g(X,ANβ
fY )ζβ − fg(wY,Nβ)ANβ

X + fg(wX,Nβ)ANβ
Y

 ,

which implies

Nf (X,Y ) =

k∑
β=1

 g(ANβ
fX − fANβ

X,Y )ζβ

−g(X, ζβ)(ANβ
f − fANβ

)Y + g(Y, ζβ)(ANβ
f − fANβ

)X

 ,

and we obtain (5.29).

From the definition of dυβ, it is well-known that

2dυβ(X,Y ) = g(∇Xζβ, Y )− g(X,∇Y ζβ),

for any X,Y ∈ Γ(TM). By using (3.22) we get

2dυβ(X,Y ) = −g(BβX,Y )

+
k∑

γ=1

{
g(ANγX,Y )− g(X,ANγY )

}
θβγ

+
k∑

γ=1

{g(Y, ζγ)σβγ(X)− g(X, ζγ)σβγ(Y )} ,

which gives (5.30).

From (5.29) and (5.30), we obtain

Theorem 5.1. Let M be an n-dimensional submanifold of an (n + k)-dimensional poly-

Norden Riemannian manifold (M̂, Φ̂, g) with the induced structure Π = (f, g, υβ, ζβ, (θβγ)k×k).

Then we have

Nf (X,Y )− 2

k∑
β=1

dυβ(X,Y )ζβ =

k∑
β=1

{g(X, ζβ)BβY − g(Y, ζβ)BβX}

−
k∑

β=1

k∑
γ=1

{g(Y, ζγ)σβγ(X)

−g(X, ζγ)σβγ(Y )ζβ}, (5.31)
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for any X,Y ∈ Γ(TM).

Since σβγ are the components of the normal connection ∇̂⊥ and Bβ = fAβ − Aβf , from

(5.31) we have

Corollary 5.1. Let M be an n-dimensional submanifold of an (n + k)-dimensional poly-

Norden Riemannian manifold (M̂, Φ̂, g). Then the induced structure Π = (f, g, υβ, ζβ, (θβγ)k×k)

on M is normal provided that the tensor field f commutes with the Weingarten operator Aβ,

for all β ∈ {1, ..., k} and the normal connection ∇̂⊥ identically vanishes on the normal bundle.

Lemma 5.2. Let M be a non-invariant submanifold of codimension k ≥ 1 in a poly-Norden

Riemannian manifold (M̂, Φ̂, g). If the normal connection ∇̂⊥ vanishes on the normal bundle,

then the vector fields ζ1, ..., ζk are linearly independent.

Proof. From (3.14) and (3.20) we write

υγ(ζβ) = mθ
βγ

− δ
βγ

−
k∑

λ=1

θβλθλγ = g (ζγ , ζβ) .

Assume that
k∑

i=1
ciζi = 0, for some real numbers c1, ..., ck. Then we have

0 =

k∑
i=1

cig(ζi, ζγ), γ ∈ {1, ..., k},

which implies a linear equation system defined by

k∑
i=1

ciΥij = 0, (5.32)

for any index j ∈ {1, ..., k}. Here, Υii = mθii − 1 −
k∑

λ=1

θ 2
iλ and Υij = mθij −

k∑
λ=1

θiλθλj , for

i, j ∈ {1, ..., k} and i ̸= j. The determinant of the coefficient matrix of the linear system

(5.32) is the determinant of the matrix given by

P = mΘ− Ik −Θ2, Θ =
(
θ
βγ

)
k×k

.

In case of M is being a non-invariant submanifold with respect to Φ̂, the determinant of

P cannot be zero which implies that the linear equation system (5.32) has only the trivial

solution. This completes the proof.

Theorem 5.2. Let M be a non-invariant submanifold of codimension k ≥ 1 in a poly-Norden

Riemannian manifold (M̂, Φ̂, g) with vanishing normal connection ∇̂⊥ on the normal bundle.
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Then the induced structure Π = (f, g, υβ, ζβ, (θβγ)k×k) on M is normal if and only if the

induced (1, 1)-tensor field f commutes with the Weingarten operator Aβ, for all β ∈ {1, ..., k}.

Proof. Assume that the induced structure Π is normal. Since ∇̂⊥ = 0 (equivalently,

σβγ = 0) on the normal bundle, from (5.31) we have, for any X,Y ∈ Γ(TM):

k∑
β=1

g(X, ζβ)BβY =

k∑
β=1

g(Y, ζβ)BβX,

which implies

k∑
β=1

g(X, ζβ)g(BβY,Z) =

k∑
β=1

g(Y, ζβ)g(BβX,Z), (5.33)

for any X,Y, Z ∈ Γ(TM). Replacing Y by Z in the last equation we write

k∑
β=1

g(X, ζβ)g(BβZ, Y ) =
k∑

β=1

g(Z, ζβ)g(BβX,Y ). (5.34)

By summing the last two equations side by side and using the skew-symmetry property of

Bβ, we obtain

k∑
β=1

{g(BβX,Z)ζβ + g(Z, ζβ)BβX} = 0.

Interchanging X with Z in the last equation and summing these equations we get

k∑
β=1

{g(Z, ζβ)BβX + g(X, ζβ)BβZ} = 0,

which gives

k∑
β=1

{g(Z, ζβ)g(BβX,Y ) + g(X, ζβ)g(BβZ, Y )} = 0. (5.35)

From (5.33) and (5.35), we obtain

k∑
β=1

g(Z, ζβ)g(BβX,Y ) = 0,

for any X,Y, Z ∈ Γ(TM). By considering the hypothesis and using Lemma 5.2, we can

observe that there exists a vector field W ∈ Γ(TM) such that it is orthogonal on

Span {{ζ1, ..., ζr}\ζβ} and g(W, ζβ) ̸= 0. So from the last equation we obtain that Bβ = 0,

for all β ∈ {1, ..., k}.

The proof of the converse part is obvious from (5.31).
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