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CHEN’S BASIC INEQUALITIES FOR HYPERSURFACES OF

STATISTICAL RIEMANNIAN MANIFOLDS
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Abstract. Some basic equalities and inequalities involving the Riemannian curvature in-

variants for hypersurfaces of statistical Riemannian manifolds are presented. With the help

of these relations, the necessary conditions for these hypersurfaces to be total geodesic, total

umbilical, or minimal have been obtained.
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1. Introduction

With the J. F. Nash’s embedding theorem, which concludes that every Riemannian man-

ifold can be isometrically embedded into some Euclidean space, the question arose how to

characterize a Riemannian manifold with the help of its intrinsic and extrinsic invariants.

Riemann curvature invariants are utilized to solve this problem since these invariants are

widely convenient tools to characterize Riemannian manifolds and the basic properties of

the shape operator of a Riemannian manifold can be shown by the relations obtained on the

section curvature, Ricci curvature, and scalar curvature.
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During the 1990s, B.-Y. Chen established some inequalities involving the intrinsic invari-

ants and the extrinsic invariants. Some of the important inequalities and their results are

given as follows:

In [8], B.-Y. Chen proved the following relation between the sectional curvature K and the

shape operator AN for an n-dimensional submanifold M in Riemannian space form Rm(c̄):

AN >
n− 1

n
(c− c̄)In, (1.1)

where c = infK ̸= c̄ and In is the identity map. The equality case of (1.1) holds for all

p ∈ M if and only if M is totally geodesic.

In [9], B.-Y. Chen established the following inequality between the squared mean curvature

and Ricci curvature for a submanifold in a real space form Rm(c̄):

For each unit tangent vector X ∈ TpM
n, the following inequality is satisfied

∥H∥2 ≥ 4

n2
{Ric(X)− (n− 1)c̄}, (1.2)

where ∥H∥2 is the squared mean curvature and Ric(X) is the Ricci curvature of Mn at X.

The equality case of (1.2) holds for all unit tangent vectors at p if and only if either p is

a totally geodesic point or n = 2 and p is a totally umbilical point.

In literature, these types of inequalities are known as Chen-like inequalities.

In addition to these facts, the theory of statistical manifolds has substantial physical

and geometrical aspects. It has applications in neural networks, machine learning, artificial

intelligence, and black holes [2, 7, 14, 27]. Statistical manifolds were firstly introduced by S.

Amari [1] in his book. Later, the basic geometrical properties of hypersurfaces of statistical

manifolds were exposed by H. Furuhata in [15, 16]. Recently, Chen-type inequalities for

submanifolds of statistical manifolds have been studied by various authors in [3, 4, 5, 6, 11,

12, 13, 18, 19, 21, 22, 23, 24], etc.

The main purpose of the present paper is to establish Chen-like inequalities on hyper-

surfaces of statistical manifolds. Although it is clear that hypersurfaces are a special case

of submanifolds and there are various studies related to Chen-like inequalities on the sub-

manifolds of statistical manifolds in the literature, many exclusive and different results on

the hypersurfaces of these manifolds have been obtained with the help of the Riemannian

curvature invariants in this paper.
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2. Preliminaries

Let (M̃, g̃) be an n−dimensional Riemannian manifold equipped with a Riemannian metric

g̃ and {e1, . . . , en} be any orthonormal frame field of Γ(TM̃). The Ricci tensor S̃0 is defined

by

S̃0(X,Y ) =
n∑

j=1

g̃(R̃0(ej , X)Y, ej)

for any X,Y ∈ Γ(TM̃), where R̃0 is the Riemannian curvature tensor field of M̃ . The Ricci

curvature R̃ic
0
(X) of any vector field X is defined by

R̃ic
0
(X) = S̃0(X,X).

For a fixed i ∈ {1, · · · , n}, we write

R̃ic
0
(ei) ≡ S̃0(ei, ei) =

n∑
j=1

g̃(R̃0(ei, ej)ej , ei), (2.3)

which is equal to

R̃ic
0
(ei) =

n∑
j ̸=i

K̃0(ei, ej). (2.4)

Here, K̃0(ei, ej) denotes the sectional curvature of a plane section spanned by ei and ej for

i ̸= j ∈ {1, . . . , n}.

In [9], B.-Y. Chen extended the notion of Ricci curvature to k-Ricci curvature, 2 ≤ k ≤ n,

in an n-dimensional Riemannian manifold. Let πk be a k-plane section of TpM̃ and X be a

unit vector field in πk. If k = n then πn = TpM ; and if k = 2 then π2 is a plane section of

TpM̃ . Let us choose an orthonormal basis {e1, . . . , ek} of πk such that e1 = X. The k-Ricci

curvature of πk at X, denoted by R̃ic
0

πk
(X), is defined by

R̃ic
0

πk
(X) =

k∑
j ̸=i

K̃0(e1, ej).

For k = n, the n-Ricci curvature of X is denoted by R̃ic
0

TpM̃ (X).

The scalar curvature is one of the most studied classical curvature invariants. The scalar

curvature τ̃0(p) at a point p is defined by

τ̃0(p) =
∑

1⩽j⩽n

K̃0(ei, ej)

=
1

2

n∑
i=1

n∑
j ̸=i

g̃(R̃0(ei, ej)ej , ei). (2.5)
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The scalar curvature τ̃(πk) of the k-plane section πk is given by

τ̃(πk) =
1

2

k∑
i=1

k∑
j ̸=i

K̃0(ei, ej).

In particular, for k = n, the n-scalar curvature at a point p is denoted by τ̃
TpM̃

(p).

Let (M, g) be a hypersurface of (M̃, g̃) and N be the unit normal vector field of (M, g).

Denote by the Levi-Civita connection of (M̃, g̃) by ∇̃0. The Gauss and Weingarten formulas

are, respectively, given by

∇̃0
XY = ∇0

XY + g(A0
NX,Y )N (2.6)

and

∇̃0
XN = −A0

NX (2.7)

for any X,Y ∈ Γ(TM), where ∇0 is the induced linear connection and A0
N is the shape

operator of (M, g).

Denote the Riemannian curvature tensor of (M, g) by R0. The equation of Gauss is given

by

R0(X,Y )Z = R̃0(X,Y )Z + g(A0
NY, Z)A0

NX − g(A0
NX,Z)A0

NY (2.8)

for any X,Y, Z ∈ Γ(TM).

The hypersurface (M, g) is called totally geodesic if A0
N = 0, minimal if traceA0

N = 0. If

A0
N (X) = λX, where λ is a smooth function on M , then (M, g) is called totally umbilical

[10].

3. Statistical Manifolds and Their Hypersurfaces

Let (M̃, g̃) be a Riemannian manifold and ∇̃ be a torsion-free connection on (M̃, g̃).

The manifold is called a statistical manifold if the following relation is satisfied for any

X,Y, Z ∈ Γ(TM̃):

g̃(∇̃ZX,Y ) = Zg̃(X,Y )− g̃(X, ∇̃∗
ZY ), (3.9)

where

∇̃0
XY =

1

2
(∇̃XY + ∇̃∗

XY ). (3.10)
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Here, ∇̃∗ is called the dual connection of ∇̃∗, the pair (∇̃, g) is called a statistical structure

on (M̃, g̃). A statistical manifold with a torsion-free connection ∇̃ is usually denoted by

(M̃, g̃, ∇̃) [1].

Now, let us denote the Riemannian curvature tensor fields with respect to ∇̃ and ∇̃∗ by

R̃ and R̃∗. Then we have

g̃(R̃∗(X,Y )Z,W ) = −g̃(Z, R̃(X,Y )W ) (3.11)

for any X,Y, Z ∈ Γ(TM̃).

A statistical manifold is said to be of constant curvature c, if the equation

R̃(X,Y )Z =
c

4
{g̃(Y,Z)X − g̃(X,Z)Y } (3.12)

holds for any X,Y, Z ∈ Γ(TM) [15].

Considering the eq. (3.11), we see that (M̃, g̃, ∇̃) is of constant curvature with respect to

∇̃ if and only if it is of constant curvature with respect to R̃∗.

Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). The Gauss and Weingarten formulas with

respect to ∇̃ and ∇̃∗ are, respectively, given by

∇̃XY = ∇XY + g(ANX,Y )N, (3.13)

∇̃XN = −A∗
NX + κ(X)N, (3.14)

∇̃∗
XY = ∇∗

XY + g(A∗
NX,Y )N, (3.15)

∇̃∗
XN = −ANX − κ(X)N (3.16)

for any X,Y ∈ Γ(TM). It is easy to show that the induced connection ∇∗ is the dual

connection of ∇. Here, κ is a 1-form, AN and A∗
N are the shape operators with respect to ∇̃

and its dual connection ∇̃∗, respectively.

Let R and R̃ denote the Riemannian curvature tensor (M, g,∇) and (M̃, g̃, ∇̃) respectively.

Then the following relation holds

R(X,Y )Z = R̃(X,Y )Z − g(A∗
NX,Z)ANY + g(A∗

NY, Z)ANX (3.17)

for any X,Y, Z ∈ Γ(TM) [15].
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Let π = Span {X,Y } be a plane section of Γ(TM). Then the K−sectional curvature is

defined by [20]

K̃(π) =
1

2

[
g̃(R̃(X,Y )Y,X) + g̃(R̃∗(X,Y )Y,X)

]
− g̃(R̃0(X,Y )Y,X). (3.18)

A hypersurface of (M̃, g̃, ∇̃) is called

i. totally geodesic with respect to ∇̃ (resp. ∇̃∗), if AN = 0 (resp.A∗
N = 0).

ii. totally umbilical with respect to ∇̃ (resp. ∇̃∗), if there exists a smooth function ρ

such that ANX = ρX (resp. A∗
NX = ρX).

iii. minimal with respect to ∇̃ (resp. ∇̃∗), if traceAN = 0 (resp. traceA∗
N = 0).

For more details on statistical manifolds and their submanifolds, we refer to [15, 16].

4. Ricci Curvature

In this section, we shall give some relations involving Ricci curvatures of hypersurfaces

immersed in (M̃, g̃, ∇̃).

Lemma 4.1. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃) and {e1, . . . , en} be an orthonormal

basis of TpM at a point p ∈ M . For any unit tangent vector X at a point p, we have the

following equalities:

Ric0(X) = R̃ic
0

TpM (X) + traceA0
Ng(ANX,X)− g(A2

NX,X). (4.19)

n∑
j=2

g(R(X, ej)ej , X) =
n∑

j=2

g̃(R̃(X, ej)ej , X) + g(ANX,X)traceA∗
N

−g(A∗
NX,ANX). (4.20)

n∑
j=2

g(R(X, ej)X, ej) = −
n∑

j=2

g̃(R̃∗(X, ej)ej , X) + g(A∗
NX,X)traceAN

−g(A∗
NX,ANX). (4.21)

Proof. In view of (2.8), the proof of (4.19) is straightforward.

Now we shall prove (4.20). From (3.17), we may write

g(R(e1, e2)e2, e1) = g̃(R̃(e1, e2)e2, e1)− g(A∗
Ne1, e2)g(ANe2, e1) (4.22)

+g(A∗
Ne2, e2)g(ANe1, e1).
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Taking trace in (4.22), we get

n∑
j=2

g(R(e1, ej)ej , e1) =
n∑

j=2

g̃(R̃(e1, ej)ej , e1)

+g(ANe1, e1)

 n∑
j=2

g(ANej , ej)− g(A∗
Ne1, e1)


+

n∑
j=2

(g(A∗
Ne1, ej)g(ANe1, ej))− g(A∗

Ne1, e1)

−g(A∗
Ne1, e1)g(ANe1, e1),

which is equivalent to

n∑
j=2

g(R(e1, ej)ej , e1) =

n∑
j=2

g̃(R̃(e1, ej)ej , e1) + g(ANe1, e1)traceA
∗
N

−
n∑

j=2

g(A∗
Ne1, ej)g(ANe1, ej). (4.23)

Now, considering the fact that {e1, . . . , en} is an orthonormal basis of TpM , we can write

A∗
Ne1 = λ1e1 + · · ·+ λnen,

ANe1 = µ1e1 + · · ·+ µnen,

where λi, µi are real numbers for each i ∈ {1, . . . , n}. Thus, we have

n∑
j=2

g(A∗
Ne1, ej)g(ANe1, ej) = λ1µ1 + · · ·+ λnµn

= g(A∗
Ne1, ANe1). (4.24)

Using (4.24) in (4.23), we get

n∑
j=2

g(R(e1, ej)ej , e1) =

n∑
j=2

g̃(R̃(e1, ej)ej , e1)

+g(ANe1, e1)traceA
∗
N − g(A∗

Ne1, ANe1). (4.25)

Putting X = e1 in (4.25) we obtain (4.21).

Now we shall prove (4.21). Using (3.11) and (3.17), we have

g̃(R̃∗(e1, ej)ej , e1) = g̃(R̃(e1, ej)e1, ej)

= −g(R(e1, ej)e1, ej)− g(A∗
Ne1, e1)g(ANej , ej)

+g(A∗
Ne1, ej)g(ANe1, ej). (4.26)
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Taking trace in (4.26), we get

n∑
j=2

g(R(e1, ej)e1, ej) =
n∑

j=2

g̃(R̃∗(e1, ej)ej , e1) + g(A∗
Ne1, ej)traceAN

−g(A∗
Ne1, ANe1). (4.27)

Putting X = e1 in (4.27), we obtain (4.21).

Now, we shall give some relations involving K−Ricci curvature and K−scalar curvature

which are defined by

Rick(X) =

n∑
j ̸=i

K(ei, ej)

and

τk(p) =
1

2

n∑
i=1

n∑
j ̸=i

g̃(R̃0(ei, ej)ej , ei).

Theorem 4.1. Let (M, g) be a minimal hypersurface with respect to ∇̃ and ∇̃∗. Then we

have

Rick(X) +Ric0(X) = R̃ic
k

TpM (X) + R̃ic
0

TpM (X) (4.28)

for any unit vector X ∈ TpM .

Proof. Under the assumption, we have from (4.19) and (4.20) that

n∑
j=2

g(R(e1, ej)ej , e1) =
n∑

j=2

g̃(R̃(e1, ej)ej , e1)− g(A∗
Ne1, ANe1) (4.29)

and

n∑
j=2

g(R(e1, ej)e1, ej) = −
n∑

j=2

g̃(R̃∗(e1, ej)ej , e1)− g(A∗
Ne1, ANe1). (4.30)

If the equations (4.29) and (4.30) are subtracted from side to side, we get

n∑
j=2

[g(R(e1, ej)ej , e1) + g(R∗(e1, ej)ej , e1)] =

n∑
j=2

[
g̃(R̃(e1, ej)ej , e1)

+g̃(R̃∗(e1, ej)ej , e1)
]
.

In view of (3.18), we see that

n∑
j=2

[
K(e1, ej) +K0(e1, ej)

]
=

n∑
j=2

K̃(e1, ej) + K̃0(e1, ej). (4.31)

Putting X = e1 in (4.31), we obtain (4.28).
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Remark 4.1. Since

A0
NX = ANX +A∗

NX

for any X ∈ Γ(TM), it is clear that if ANX = A∗
NX = 0, then we have A0

N = 0. But

the converse part of this claim is not correct in general. Considering this fact, the claim of

Theorem 4.1 may not be correct when the hypersurface is minimal with respect to ∇̃0.

Now, we recall the Chen-Ricci inequality for a Riemannian submanifold [17, 26]:

Theorem 4.2. Let (M, g) be an n−dimensional submanifold of a Riemannian manifold

(M̃, g̃). Then the following statements are true.

i. For any unit tangent vector X, we have

Ric0(X) ⩽
1

4
n2 ∥H∥2 + R̃ic

0

TpM (X). (4.32)

ii. The equality case of (4.32) holds for all unit tangent vectors of TpM if and only if

either p is a totally geodesic point or n = 2 and p is a totally umbilical point.

Theorem 4.3. Let (M, g) be a n > 2 minimal hypersurface with respect to ∇̃ and ∇̃∗. Then

we have

Rick(X) ≥ R̃ic
0

TpM (X) (4.33)

for any unit tangent vector X ∈ TPM . The equality case of (4.33) holds for all X ∈ TpM if

and only if ANX = −A∗
NX.

Proof. Using the fact that traceAN = traceA∗
N = 0, we see that H = 0 from Remark

4.1. In view of (4.32), we get

Ric0(X) ≤ R̃ic
0

TpM (X). (4.34)

Using (4.34) in (4.28), we obtain (4.33). From Theorem 4.2, the equality case of (4.33) is

satisfied if and only if A0
NX = 0 which shows that ANX = −A∗

NX for all X ∈ TpM .

Now we recall the following theorem of T. Takahashi [25]:

Theorem 4.4. The necessary condition for a submanifold of an Euclidean space to be a

minimal immersion is that its Ricci curvature is negative semi-definite.

In the following corollary, we obtain a similar claim of Theorem 4.4 for a minimal hyper-

surface with respect to ∇̃ and ∇̃∗ on statistical manifolds with constant curvatures.
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Corollary 4.1. Let (M̃, g̃, ∇̃) be of K−constant curvature with c = 0 and (M, g) be a

minimal hypersurface with respect to ∇̃ and ∇̃∗. Then we have

Rick(X) ≥ 0

for any unit tangent vector X ∈ TpM .

Now we shall give the following lemma for later uses:

Lemma 4.2. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then the following relation is

satisfied for any unit tangent vector X ∈ TpM :

Rick(X) = R̃icTpM (X)− 1

2
g(ANX,X)traceA∗

N

+
1

2
g(A∗

NX,X)traceAN + g(A0
NX,X)traceA0

N +
∥∥A0

NX
∥∥2 . (4.35)

Proof. From (3.18), we have

R̃ic
k

TpM (ei) =
1

2

n∑
j=2

g̃(R̃(ei, ej)ej , ei) +
1

2

n∑
j=2

g̃(R̃∗(ei, ej)ej , ei)

−
n∑

j=2

g̃(R̃0(ei, ej)ej , ei). (4.36)

In view of (4.19), (4.20), and (4.21) in (4.36), we obtain

R̃ic
k

TpM (ei) =
1

2

n∑
j=2

g(R(ei, ej)ej , e1) +
1

2

n∑
j=2

g(R(e1, ej)ej , e1)

−
n∑

j=2

g(R0e1, ej)ej , e1) +
1

2
g(ANe1, e1)traceA

∗
N

−1

2
g(A∗

Ne1, ANe1)−
1

2
g(A∗

Ne1, e1)traceAN

+
1

2
g(ANe1, A

∗
Ne1)− g(A0

Ne1, e1)traceA
0 + g(A0

Ne1, A
0
Ne1).

Putting X = e1, the proof of (4.35) is straightforward.

From Lemma 4.2, we get the following corollary immediately:

Corollary 4.2. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then the following inequality is

satisfied for any unit tangent vector X ∈ TpM :

Rick(X) ⩽ R̃icTpM (X)− 1

2
g(ANX,X)traceA∗

N

+
1

2
g(A∗

NX,X)traceAN + g(A0
NX,X)traceA0

N . (4.37)
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5. Scalar Curvature

In this section, we shall give some relations involving scalar curvatures of hypersurfaces

immersed in (M̃, g̃, ∇̃).

Let {e1, e2, . . . , en} be an orthonormal basis of TpM at a point p ∈ M . We put

σij = g(ANei, ej) and σ∗
ij = g(A∗

Nei, ej)

for any i, j ∈ {1, 2, · · · , n}. From (3.17), we write

g(R(ei, ej)ej , ei) = g̃(R̃(ei, ej)ej , ei)− σ∗
ijσji + σ∗

jjσii. (5.38)

Taking trace in (5.38), we get

τ(p) = τ̃TpM (p)− 1

2

n∑
i,j=1

(
σ∗
ijσji + σ∗

jjσii
)
. (5.39)

Let us define

∣∣A0
N

∣∣ =
 n∑

i,j=1

g(A0
Nei, ej)

2

. (5.40)

In light of the above facts, we shall state the following lemma:

Lemma 5.1. For any hypersurface of (M̃, g̃, ∇̃), we have

2
n∑

i,j=1

(
σ∗
ijσji + σ∗

jjσii
)

= 4
[
traceA0

N

]2 − [traceAN ]2 − [traceA∗
N ]2

+4
∣∣A0

N

∣∣− ∥A∗
N∥2 − ∥AN∥ . (5.41)

Proof. We can write

2
n∑

i,j=1

(
σ∗
ijσji + σ∗

jjσii
)

=

 n∑
i,j=1

σii + σ
∗
jj

2

−

(
n∑

i=1

σii

)2

−

(
n∑

i=1

σ∗
jj

)2

+

 n∑
i,j=1

σ∗
ij + σ

∗
ji

2

−

(
n∑

i=1

σ∗
ij

)2

−

(
n∑

i=1

σji

)2

. (5.42)
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On the other hand, we also have

n∑
i,j=1

σii + σ∗
jj =

n∑
i,j=1

[g(ANei, ei) + g(A∗
Nej , ej)]

=
n∑

i=1

g(ANei, ei) +
n∑

j=1

g(A∗
Nej , ej)

= traceAN + traceA∗
N

= trace(AN +A∗
N )

= 2traceA0
N . (5.43)

In a similar way, we have

n∑
i,j=1

σ∗
ij + σji =

n∑
i,j=1

[g(A∗
Nei, ei) + g(ANej , ej)]

=
n∑

i,j=1

g((A∗
N +AN )ei, ej)

= 2

n∑
i,j=1

g(A0
Nei, ej) (5.44)

The proof is straightforward from computing the other terms on the right-hand side of

(5.42) in a similar way.

From the equation (5.39) and (5.41), we get the following lemma:

Proposition 5.1. For any hypersurface of (M̃, g̃, ∇̃), we have

τ(p) = τ̃TpM (P )− 2
[
traceA0

N

]2
+

1

2
[traceAN ]2 +

1

2
[traceA∗

N ]2

−2
∣∣A0

N

∣∣+ 1

2
∥A∗

N∥2 + 1

2
∥AN∥2 . (5.45)

Theorem 5.1. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then we have

τ(p) ≥ τ̃TpM (p)− 2
[
traceA0

N

]2
+

1

2
[traceAN ]2 +

1

2
[traceA∗

N ]2 − 2
∣∣A0

N

∣∣ (5.46)

for any p ∈ M . The equality case of (5.46) holds for all p ∈ M if and only if M is totally

geodesic.

Proof. The proof of (5.46) is straightforward from (5.45). The equality case of

(5.46) holds for all p ∈ M if and only if we have A∗
N = AN = 0. Using the fact that

A0
N =

1

2
(ANX + A∗

NX), we obtain A0
NX = 0 for any X ∈ TpM . This shows that M is

totally geodesic. The converse part of the proof is straightforward.

Now we shall give the following lemma for later uses:
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Lemma 5.2. For any hypersurface of (M̃, g̃, ∇̃), we have

τk(p) = τ̃k(p) + (traceA0
N )2 + trace(A0

N )2. (5.47)

Proof. Let {e1, . . . , en} be an orthonormal basis of TpM at a point p ∈ M . From

Lemma 4.2, we write

Rick(ei) = R̃icTpM (ei)−
1

2
g(ANei, ei)traceA

∗
N +

1

2
g(A∗

Nei, ei)traceAN

+traceA0
Ng(A0

Nei, ei) +
∥∥A0

Nei
∥∥2 (5.48)

for any i ∈ {1, . . . , n}. Taking trace in (5.48), we get

τk(p) = τ̃kTpM (p) +
1

2
traceAN traceA∗

N − 1

2
traceAN traceA∗

N

+(traceA0
N )2 +

n∑
i=1

g(A0
Nei, A

0
Nei) (5.49)

which is equivalent to (5.47).

As a result of Lemma 5.2, we obtain the following corollaries:

Corollary 5.1. Let (M, g) be a hypersurface of (M̃, g̃, ∇̃). Then we have

τ(p) ≤ τ̃(p) + trace(A0
N )2 (5.50)

for any p ∈ M . The equality case of (5.50) holds for all p ∈ M if and only if M is minimal.

Corollary 5.2. Let (M, g) be a totally umbilical hypersurface of (M̃, g̃, ∇̃). Then we have

τ̃TpM (p) < τTpM (p) (5.51)

Proof. If (M, g) is a totally umbilical hypersurface, then there exists a smooth

function ρ0 on M such that we can write A0
NX = ρ0X for any X ∈ Γ(TM). Thus, we obtain

from (5.47) that

τ̃TpM (p) = τTpM (p) + (n2 − n)λ2. (5.52)

In view (5.52), we have (5.51).
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6. Examples

Now we shall give an example satisfying some results obtained in this paper:

Example 6.1. Let us consider a hypersurface M given by

M = {(cosx1, sinx1, x2, x3) : x1 ∈ (0, 2π], x2, x3 ∈ R}

in E4. The natural tangent vector fields of M are given by

e1 = −sinx1∂1 + cosx1∂2, e2 = ∂3, e3 = ∂4

and the normal vector field of M is given by

N = cosx1∂1 + sinx1∂2,

where {∂1, ∂2, ∂3, ∂4} is the natural basis of E4. By a straightforward computation, we easily

have

∇̃0
e1e1 = −cosx1∂1 − sinx1∂2, ∇̃0

e2e2 = 0, ∇̃0
e3e3 = 0

and ∇̃0
eiej = 0 for i ̸= j ∈ {1, 2, 3}. From (2.6), we get

A0
N =


−1 0 0

0 0 0

0 0 0

 . (6.53)

Now, suppose that the connections ∇̃ and ∇̃∗ are satisfied the following relations:

∇̃e1e1 = −2 cosx1∂1 ∇̃e2e2 = e2, ∇̃e3e3 = e3, (6.54)

∇̃∗
e1e1 = −2 sinx1∂2, ∇̃∗

e2e2 = −e2, ∇̃∗
e3e3 = −e3,

and ∇̃eiej = ∇̃∗
eiej = 0 for i ̸= j ∈ {1, 2, 3}. Then we get

K̃(e1, e2) = K̃(e1, e3) = K̃(e2, e3) = 0

and

R̃icTpM (e1) = R̃icTpM (e2) = R̃icTpM (e1) = τ̃TpM (p) = 0. (6.55)

In view of (3.13), (3.15) and (6.54), we have

AN =


−2 cos2 x1 0 0

0 0 0

0 0 0

 and A∗
N =


−2 sin2 x1 0 0

0 0 0

0 0 0

 . (6.56)
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From these facts, it is clear that

K(e1, e2) = K(e1, e3) = K(e2, e3) = 0, (6.57)

Ric(e1) = Ric(e2) = Ric(e3) = τ(p) = 0. (6.58)

Considering (6.53), (6.55), (6.56) and (6.58), we see that the hypersurface M is satisfied

the claims of Theorem 4.1, Theorem 4.3, Corollary 4.2, Theorem 5.1, and Corollary 5.1.

Example 6.2. Let us consider the following hypersurface

M = {(x1, x2, x3, 0) : ∀x1, x2, x3 ∈ R}

in E4. Then it is clear that TpM = Span {e1, e2, e3} and N = ∂4 such that ei = ∂i for

i ∈ {1, 2, 3}. Suppose that the connection ∇ and ∇̃∗ are satisfied

∇̃e1e1 = ∂1 + ∂4, ∇̃∗
e1e1 = −∂1 − ∂4,

∇̃e1e1 = ∂2 + ∂4, ∇̃∗
e2e2 = −∂2 − ∂4,

and the other component of ∇̃eiej are equal to zero for i, j ∈ {1, 2, 3}. Then we have

∇e1e1 = ∂1, ∇∗
e1e1 = −∂1,

∇e2e2 = ∂2, ∇∗
e2e2 = −∂2,

and other component of ∇eiej are equal to zero for i, j ∈ {1, 2, 3}. By a straightforward

computation, we obtain M is minimal with respect to ∇̃ and ∇̃∗, and c = 0. Also, we see

that the hyperplane M satisfies of Corollary 4.1 by Rick(X) = 0 for any X ∈ TpM at any

point p ∈ M .
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