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PLANE CURVES WITH SAME EQUI-AFFINE AND EUCLIDEAN

INVARIANTS
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Abstract. In the present paper, we consider and solve the problem of finding parametric

plane curves with the same equi-affine and Frenet curvatures. We then classify the paramet-

ric plane curves with prescribed equi-affine curvature by solving certain ordinary differential

equations. Our classification generalizes the plane curves with constant equi-affine curva-

ture. Several examples are also given by figures.
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1. Introduction

Affine Differential Geometry, since nineteenth century, has been investigated and devel-

oped by a larger group of geometers led by Pick, Tzitzeica, Berwald, Blaschke among others.

See [13] for this process in detail. This branch of Geometry is based on the study of the

invariant properties of affine n−space Rn under the (equi-)affine transformations.

The theory of curves in Rn has had a great interest from past to present [1, 2, 4, 5, 10, 11,

16, 18, 20, 21, 23, 24]. In this paper, we mainly consider the problem of finding parametric

plane curves with the same equi-affine and Frenet curvatures. For example, a unit circle in
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the Euclidean setting has the same constant equi-affine and Frenet curvatures, i.e. 1. We

find the motivation for this study from [3, equation 28], [17, Theorem 4, Theorem 5], [22,

Remark 6]. Although, in these cited papers, all authors constructed certain relations between

the equi-affine and Frenet curvatures for a 2d curve, as far as we know, to solve our main

problem has been overlooked till now.

In the context of affine curves, another interest has been to find the parametric equations

of the curves with prescribed affine curvatures, see [9, 8, 14, 25]. As a secondary purpose of

this paper, we follow this mainstream and classify parametric plane curves with prescribed

equi-affine curvatures by solving certain vector ordinary differential equations (ODEs).

The framework of this paper can be explained as follows in detail.

Let R2 be the affine plane equipped with a fixed area form |· ·| such that |u v| = u1v2 −

u2v1, for some vectors u = (u1, u2) and v = (v1, v2) . The equi-affine group of R2 is generated

by the action of the special linear group SL(2,R) and the group of translations of R2. An

equi-affine transformation of R2 is given in matrix form

x̄ = Ax + b, (1.1)

where x̄,x,b ∈ R2×1 and A ∈ SL(2,R). Point out that the area of a parallelogram is

preserved by (1.1) and hence it is so-called area-preserving affine transformation [15].

(1.1) turns to a Euclidean transformation of R2 if A ∈ SO(2) [6]. By an equi-affine

(resp. a Euclidean) invariant we mean a property of R2 that remains unchanged under the

equi-affine (resp. Euclidean) group.

Let x = x (σ) = (x (σ) , y (σ)) , σ ∈ I ⊂ R, be a smooth parametric curve in R2. The equi-

affine arc-length parameter σ and curvature κa of x are equi-affine invariants of R2 while

the Euclidean arc-length parameter s and Frenet curvature κf of x are Euclidean invariants.

The Fundamental Theorem of equi-affine (Euclidean) plane curves implies that a plane curve

with constant equi-affine (Frenet) curvature is a quadratic curve (a straight line or a circle)

[15, 19]. An equi-affine plane curve with constant equi-affine curvature is homogeneous, i.e.

the orbit of a point under a 1-parameter group of the transformations given by (1.1). The

converse is true as well [7].

We point out that a unit circle in the Euclidean setting has the same constant equi-

affine and Frenet curvatures (i.e. κa = κf = 1) as well as the same arc-length parameters.

Naturally the following question occurs: is there any plane curve x with κa = κf besides the

unit circle in the Euclidean setting? In the mean while, we state that the plane curve x is
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a unit circle in the Euclidean setting if and only if its equi-affine and Euclidean arc-length

parameters are same (see Lemma 3.1.) We answer to this question (see Theorem 3.2) by

assuming that x has different equi-affine and Euclidean arc-length parameters, because it

turns to a unit circle in the Euclidean setting otherwise.

It is worth to specify that, in centro-affine context, Liu [14, Proposition 4.1] obtained a

characterization for a plane curve in terms of its Frenet curvature that the centro-affine and

Euclidean arc-length parameters are same.

Furthermore, by solving a vector ODE of Euler-Cauchy type [12, p. 69] we obtain the

parametric plane curves with κa (σ) = a (bσ + c)−2 , for some constants a, b, c with b2+c2 6= 0.

When a or b is equal to zero, these reduce to the plane curves with constant equi-affine

curvature and thus our case is more general.

2. Preliminaries

Theorem 2.1. We provide basic differential geometric objects of plane curves from [6, 7, 15,

19].

2.1. Equi-affine plane curves. Let x = x (t) = (x (t) , y (t)) , t ∈ I ⊂ R, be a non-

degenerate smooth parametric curve in R2, namely |ẋ ẍ| 6= 0 for any t, where ẋ = dx
dt and

ẍ = d2x
dt2
. This yields that nowhere x has inflection points. Equi-affine arc-length function σ

is defined by

σ (t) =

∫ t

t0

3
√
|ẋ ẍ|dt. (2.1)

Denote x′ = dx
dσ and x′′ = d2x

dσ2 . It follows

∣∣x′ x′′∣∣ = 1 for all σ, (2.2)

in which the parameter σ is said to be equi-affine arc-length. Taking derivative of (2.2) with

respect to σ yields |x′ x′′′| = 0, which means that x′ and x′′′ are linearly dependent. Then

there exist a function κa of σ such that x′′′ = −κax′. Therefore the following occurs

κa (σ) =
∣∣x′′ x′′′∣∣ , (2.3)

called equi-affine curvature of x. Because κa is given by determinant, it is invariant of equi-

affine transformations of R2. It is also clear that the following vector ODE holds

x′′′ + κax
′ = 0. (2.4)
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The Fundamental Theorem of equi-affine plane curves states that for a given smooth

function κa (σ) , σ ∈ I, there exist a unique equi-affine plane curve x admitting σ as equi-

affine arc-length and κa as equi-affine curvature up to an equi-affine transformation of R2.

In this regard, if κa (σ) is a constant function then the solutions of (2.4) yield that, up to

suitable equi-affine transformations, x is either a parabola (κa = 0) or an ellipse (κa > 0) or

a hyperbola (κa < 0) given in explicit forms y = 1
2x

2 and κax
2 + κ2ay

2 = 1. Point out that x

turns to a unit circle in the Euclidean setting when κa = 1 identically.

2.2. Euclidean plane curves. Let x = x (t) = (x (t) , y (t)) , t ∈ I ⊂ R, be a regular smooth

parametric curve in the Euclidean plane E2, namely ‖ẋ‖ 6= 0 for any t, where ‖·‖ stands for

the Euclidean norm. Euclidean arc-length function s of x is given by

s (t) =

∫ t

t0

‖ẋ‖ dt,

in which ds
dt is strictly positive and the inverse of s exists. Therefore x

(
s−1 (t)

)
is so-called

unit-speed curve, i.e.

∥∥∥∥dx(s−1(t))
dt

∥∥∥∥ = 1, and the parameter s is said to be Euclidean arc-length.

If x = x (s) is a unit-speed curve then its Frenet curvature is given by κf (s) =
∥∥∥d2xds2 ∥∥∥ . In

this sense, there is a smooth function θ of s, called turning angle of x, such that

dx

ds
= (cos θ (s) , sin θ (s)) . (2.5)

Here we easily get κf (s) =
∣∣dθ
ds

∣∣ . Note that dθ
ds is also called the signed Frenet curvature of x.

The Fundamental Theorem of Euclidean plane curves states that for given smooth function

κf (s) , s ∈ I, there exist a unique Euclidean plane curve x admitting s as Euclidean arc-

length and κf as signed Frenet curvature up to a Euclidean transformation of E2. In this

regard, if κf (s) is a constant function then the solutions of (2.5) yield that, up to suitable

Euclidean transformations, x is either a straight line (κf = 0) or a circle (κf 6= 0) with radius

1
κf
.

3. Plane curves with κa = κf

Throughout the section, for a plane curve, the equi-affine arc-length parameter is denoted

by σ, the Euclidean arc-length parameter by s, the equi-affine curvature by κa and the Frenet

curvature by κf .

Lemma 3.1. Let x be a non-degenerate smooth parameterized curve in R2 by the same equi-

affine and Euclidean arc-length parameters. Then, up to a Euclidean transformation, it is

the quadratic curve with κa = 1 parameterized by x (σ) = (cosσ, sinσ) .
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Remark 3.1. In Euclidean setting it is the unit circle and its Frenet curve is also κf = 1.

Proof. Let σ denote both the equi-affine and Euclidean arc-length parameters of x.

It then follows ∥∥x′∥∥ =
∣∣x′ x′′∣∣ = 1, (3.1)

where x′ = dx
dσ and x′′ = d2x

dσ2 . Denoting the curve x as x(σ) = (x (σ) , y (σ)) and using (3.1)

we get (
x′
)2

+
(
y′
)2

= 1 (3.2)

and

x′y′′ − x′′y′ = 1. (3.3)

Differentiating (3.2) with respect to σ we have

x′x′′ + y′y′′ = 0 or x′′ =
−y′y′′

x′
, (3.4)

where x′ 6= 0 due to (3.3). Substituting (3.4) into (3.3) gives

y′′ = x′. (3.5)

By differentiating (3.5) with respect to σ we find

y′ = x+ c, (3.6)

for a constant of integration c. Using (3.5) and (3.6) into (3.4) implies that

x′′ + x = −c. (3.7)

By solving (3.7), we derive

x (σ) = λ1 cosσ + λ2 sinσ − c. (3.8)

It follows from (3.6) and (3.8) that

y (σ) = λ1 sinσ − λ2 cosσ + d,

for a constant of integration d. (3.2) immediately implies

λ21 + λ22 = 1

and therefore the curve x can be parametrically written as

x (σ) = (λ1 cosσ + λ2 sinσ − c, λ1 sinσ − λ2 cosσ + d) .

Up to a Euclidean transformation we complete the proof.
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Next we observe the non-degenerate plane curves whose the equi-affine and Frenet curva-

tures are same. Obviously, this curvature cannot be zero in our case. Remark also that the

equi-affine arc-length of such a curve is related by its Frenet curvature as follows

σ (s) =

∫ s

s0

3

√
κf (t)dt.

Therefore we have the following result.

Theorem 3.1. Let x be a non-degenerate smooth parametric curve in R2 with the same

equi-affine and signed Frenet curvatures κ = κ (σ) . Then, up to suitable equi-affine transfor-

mations, it is either a quadratic curve with κ = 1 (namely a unit circle in Euclidean setting)

or parameterized by

x (σ) =

(∫
cos

(∫
κ

2
3dσ

)
κ
−1
3 dσ,

∫
sin

(∫
κ

2
3dσ

)
κ
−1
3 dσ

)
, (3.9)

where σ is the equi-affine arc-length parameter of x given by one of the following

σ =
1

3

(
1 + κ

−1
3

)√
−1 + 2κ

−1
3 , (3.10)

and

σ = c−1
√
−1 + 2κ

−1
3 + cκ

−2
3 − c

−3
2 ln

∣∣∣∣1 + cκ
−1
3 +
√
c

√
−1 + 2κ

−1
3 + cκ

−2
3

∣∣∣∣ , (3.11)

for some constant c 6= 0.

Remark 3.2. In (3.11) it is not easy to express the curvature function κ in terms of σ,

however (3.10) can be simplified as follows: put y = 1 + κ
−1
3 and then (3.10) turns to the

following algebraic equation of degree 3

2y3 − 3y2 − 9σ2 = 0,

in which the real root is

y =
1

2

[
−1 +

(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

)−1
3

+
(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

) 1
3

]
.

Therefore we deduce

κ (σ) =

[
−3

2
+

1

2

(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

)−1
3

+
1

2

(
−1 + 18σ2 + 6

√
−σ2 + 9σ4

) 1
3

]−3
.

Proof. A plane curve is completely determined by its signed Frenet curvature κ =

κ (s) , namely

x (s) =

(∫
cos

(∫
κds

)
ds,

∫
sin

(∫
κds

)
ds

)
. (3.12)
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Let a derivative with respect to σ be denoted by a dash ′. Differentiating (3.12) three times

with respect to σ gives the following equations

x′ =

(
cos

(∫
κds

)
, sin

(∫
κds

))
s′ (3.13)

x′′ =
(
−κ (s′)2 sin

(∫
κds
)

+ s′′ cos
(∫
κds
)
,

κ (s′)2 cos
(∫
κds
)

+ s′′ sin
(∫
κds
)) (3.14)

and

x′′′ =
(
−
[
κ′ (s′)2 + 3κs′s′′

]
sin
(∫
κds
)

+
[
−κ2 (s′)3 + s′′′

]
cos
(∫
κds
)
,[

−κ2 (s′)3 + s′′′
]

sin
(∫
κds
)

+
[
κ′ (s′)2 + 3κs′s′′

]
cos
(∫
κds
))
.

(3.15)

Substituting (3.13) and (3.15) into (2.4) gives

x′′′ + κx′ =

=
(
−
[
κ′ (s′)2 + 3κs′s′′

]
sin
(∫
κ (s) ds

)
+
[
−κ2 (s′)3 + s′′′ + κs′

]
cos
(∫
κ (s) ds

)
,[

−κ2 (s′)3 + s′′′ + κs′
]

sin
(∫
κ (s) ds

)
−
[
κ′ (s′)2 + 3κs′s′′

]
cos
(∫
κ (s) ds

))
= 0.

(3.16)

By using the linearly independence of Sine and Cosine in (3.16) we find

κ′
(
s′
)2

+ 3κs′s′′ = 0

and

− κ2
(
s′
)3

+ κs′ + s′′′ = 0. (3.17)

On the other hand from (2.3), (3.12) and (3.13) we conclude

κ
(
s′
)3

= 1, (3.18)

which leads to

ds = κ
−1
3 dσ. (3.19)

By (3.12) and (3.19) we have (3.9). Assume now in (3.18) that both κ and s′ are constants.

Put κ = κ0. It follows from (2.5) that x turns to a circle in the Euclidean setting with radius

1
|κ0| . In order for such a curve to have constant equi-affine curvature, x must be a quadratic

curve with κa = 1. Otherwise, namely neither κ nor s′ is constant, it then follows from (3.17)

and (3.18) that

κ
[
κ
−1
3 − 1

]
+
(
κ
−1
3

)′′
= 0. (3.20)

Letting κ = (y + 1)−3 into (3.20) yields

y′′ +
y

(y + 1)3
= 0. (3.21)
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After putting p = y′ and dp
dy = y′′

y′ into (3.21) we deduce

p
dp

dy
+

y

(y + 1)3
= 0. (3.22)

Solving (3.22) gives

p (y) =

√
c+

1 + 2y

(1 + y)2
. (3.23)

Because y = κ
−1
3 − 1, (3.23) follows

dσ =
d
(
κ
−1
3

)
√
c+ 2κ

1
3 − κ

2
3

. (3.24)

By solving (3.24) we obtain (3.10) and (3.11) according to c = 0 or c 6= 0.

4. Plane curves with prescribed equi-affine curvature

As we can see from (2.4), classifying parametric plane curves with prescribed equi-affine

curvature directly reduces to solve vector ODE with variable coefficient. In general, solving

such equations is not easy and one of the well-known ODEs with variable coefficient is of

Euler-Cauchy type. If we put the equi-affine curvature as

κa (σ) = a (bσ + c)−2 , b2 + c2 6= 0, (4.1)

for some constants a, b, c, then (2.4) leads to a vector ODE of Euler-Cauchy type. Moreover,

our choice (4.1) generalizes plane curves with constant equi-affine curvature as a secondary

purpose of this paper because x turns to a parabola if a = 0, an ellipse b = 0 and ac−2 > 0,

and a hyperbola b = 0 and ac−2 < 0.

In this section, we try to classify parametric plane curves whose the equi-affine curvature

is given by (2.4). Since we want to generalize plane curves with constant equi-affine curvature

we may assume that ab 6= 0. Putting p = ab−2, (4.1) turns to κa (σ) = pσ−2 up to a suitable

translation of σ. Therefore we have the following result

Theorem 4.1. Let the interval I do not contain zero and a plane curve x : I → R2 have the

equi-affine curvature κa (σ) = pσ−2, p 6= 0. Then, up to suitable equi-affine transformations,

it has one of the following parametric expressions

(1) if p = −2,

x (σ) =
1

3

(
σ3,− lnσ

)
;
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(2) if p < 1
4 and p 6= −2, p 6= 0,

x (σ) =

(
2

3 +
√

1− 4p
σ

3+
√

1−4p
2 ,

2

1− 4p− 3
√

1− 4p
σ

3−
√
1−4p
2

)
;

(3) if p = 1
4 ,

x (σ) =

(
2

3
σ

3
2 ,

2

9
σ

3
2 (−2 + 3 lnσ)

)
;

(4) if p > 1
4 ,

x (σ) = 2σ
3
2

5+16p

(
3 cos

(√
4p− 1 lnσ

)
+ 2
√

4p− 1 sin
(√

4p− 1 lnσ
))

−2 cos
(√

4p− 1 lnσ
)

+ 3√
4p−1 sin

(√
4p− 1 lnσ

))
.

Proof. By (2.4) we write the following vector ODE

x′′′ +
p

σ2
x′ = 0, p 6= 0, (4.2)

where x′ = dx
dσ , etc. Let x′ = y and x′′′ = y′′, then (4.2) implies to the ODE of Euler-Cauchy

type

σ2y′′ + py = 0, (4.3)

which can be reduced to the vector linear ODE with constant coefficient

ÿ − ẏ + py = 0, (4.4)

where ẏ = dy
du , ÿ = d2y

du2
and σ = eu. The characteristic equation of (4.4) follows

λ2 − λ+ p = 0,

in which the roots are λ1,2 = 1±
√
1−4p
2 . According to the sign of the discriminant 1− 4p, we

have to distinguish three cases:

(1) p < 1
4 . We write the solution of (4.4) as

y (σ) = c1σ
1+
√
1−4p
2 + c2σ

1−
√
1−4p
2 (4.5)

for some constant vectors c1, c2 ∈ R2. We have two cases:

(a) p = −2. Integrating (4.5) gives

x (σ) =
1

3
c1σ

3 + c2 lnσ + c0,

for a constant vector c0 ∈ R2. The fact that |x′ x′′| = 1 for each σ ∈ I implies

|c1 c2| = −1
3 and hence we may set c0 = (0, 0) , c1 = (1, 0) and c2 =

(
0, −13

)
.

This proves the first statement of the theorem.
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(b) p 6= −2. Then integrating (4.5) leads to

x (σ) =
2

3 +
√

1− 4p
c1σ

3+
√
1−4p
2 +

2

3−
√

1− 4p
c2σ

3−
√
1−4p
2 + c0,

for a constant vector c0 ∈ R2. The condition that |x′ x′′| = 1 for each σ ∈ I

gives |c1 c2| = −1√
1−4p and hence we may set c0 = (0, 0) , c1 = (1, 0) and c2 =(

0, −1√
1−4p

)
, which gives the proof of the second statement of the theorem.

(2) p = 1
4 . Then the solution of (4.4) follows

y (σ) = σ
1
2 [c1 + c2 lnσ] , (4.6)

for some constant vectors c1, c2 ∈ R2. Integrating (4.6) yields

x (σ) =
2

3
σ

3
2 c1 +

2

9
σ

3
2 (−2 + 3 lnσ) c2 + c0,

for a constant vector c0 ∈ R2. Because |x′ x′′| = 1 for each σ ∈ I we get |c1 c2| = 1

and may set c0 = (0, 0) , c1 = (1, 0) and c2 = (0, 1) . Therefore we derive the proof of

the third statement of the theorem.

(3) p > 1
4 . (4.4) leads to

y (σ) = σ
1
2

[
cos
(√

4p− 1 lnσ
)
c1 + sin

(√
4p− 1 lnσ

)
c2

]
, (4.7)

for some constant vectors c1, c2 ∈ R2. By integrating (4.7) we conclude

x (σ) = 2σ
3
2

5+16p

{[
3 cos

(√
4p− 1 lnσ

)
+ 2
√

4p− 1 sin
(√

4p− 1 lnσ
)]
c1−[

−2
√

4p− 1 cos
(√

4p− 1 lnσ
)

+ 3 sin
(√

4p− 1 lnσ
)]
c2
}

+ c0,

for a constant vector c0 ∈ R2. Because |x′ x′′| = 1 for each σ ∈ I we have |c1 c2| =

1√
4p−1 and may set c0 = (0, 0) , c1 = (1, 0) and c2 =

(
0, 1√

4p−1

)
. This completes the

proof.

Example 4.1. Let the following plane curves with prescribed equi-affine curvature be param-

eterized by

(1) x (σ) = 1
3

(
σ3,− lnσ

)
, κa (σ) = −2σ−2 for σ ∈

[
1
2 , π
]
,

(2) x (σ) =
(
2
7σ

7
2 , 12σ

−1
2

)
, κa (σ) = −15

4 σ−2 for σ ∈
[
1
2 , 1
]
,

(3) x (σ) =
(
2
3σ

3
2 , 29σ

3
2 (−2 + 3 lnσ)

)
, κa (σ) = 1

4σ
−2 for σ ∈

[
1
2 , π
]
,

(4) x (σ) = 2σ
3
2

13 (3 cos (lnσ) + 2 sin (lnσ) ,−2 cos (lnσ) + 3 sin (lnσ)) , κa (σ) = 1
2σ
−2 for

σ ∈
[
1
2 , π
]
.

These curves can be plotted as below:
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Figure 1. Plane curve with κa (σ) = −2σ−2 for σ ∈
[
1
2 , π
]
.
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0.50
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Figure 2. Plane curve with κa (σ) = −15
4 σ−2 for σ ∈

[
1
2 , 1
]
.

0 1 2 3

-0.5

0.0

0.5

1.0

1.5
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